---
title: "Introduction aux algorithmes"
date: "2021-10-13"
patat:
  eval:
    tai:
      command: fish
      fragment: false
      replace: true
    ccc:
      command: fish
      fragment: false
      replace: true
  images:
    backend: auto
...


# Représentation des nombres (1/2)

* Le nombre `247`.

## Nombres décimaux: Les nombres en base 10 

+--------+--------+--------+
| $10^2$ | $10^1$ | $10^0$ |
+--------+--------+--------+
| `2`    | `4`    | `7`    |
+--------+--------+--------+

$$
247 = 2\cdot 10^2 + 4\cdot 10^1 + 7\cdot 10^0.
$$

# Représentation des nombres (2/2)

* Le nombre `11110111`.

## Nombres binaires: Les nombres en base 2

+-------+-------+-------+-------+-------+-------+-------+-------+
| $2^7$ | $2^6$ | $2^5$ | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$ |
+-------+-------+-------+-------+-------+-------+-------+-------+
| `1`   | `1`   | `1`   | `1`   | `0`   | `1`   | `1`   | `1`   |
+-------+-------+-------+-------+-------+-------+-------+-------+
 
$$
1\cdot 2^7 + 1\cdot 2^6 +1\cdot 2^5 +1\cdot 2^4 +0\cdot 2^3 +1\cdot 2^2
+1\cdot 2^1 +1\cdot 2^0
$$

. . .

$$
= 247.
$$

# Conversion de décimal à binaire (1/2)

## Convertir 11 en binaire?

. . .

* On décompose en puissances de 2 en partant de la plus grande possible

    ```
    11 / 8 = 1, 11 % 8 = 3
    3  / 4 = 0,  3 % 4 = 3
    3  / 2 = 1,  3 % 2 = 1
    1  / 1 = 1,  1 % 1 = 0
    ```
* On a donc

    $$
    1011 \Rightarrow 1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot
    2^0=11.
    $$

# Conversion de décimal à binaire (2/2)

## Convertir un nombre arbitraire en binaire: 247?

* Par groupe établir un algorithme.

. . .

## Algorithme

1. Initialisation
    
    ```C
    num = 247
    while (2^N < num) {
        N += 1
    }
    ```

. . .

2. Boucle

    ```C
    while (N >= 0) {
        bit = num / 2^N
        num = num % 2^N
        N += 1
    }
    ```

# Les additions en binaire

Que donne l'addition `1101` avec `0110`?

* L'addition est la même que dans le système décimal

    ```
       1101         8+4+0+1 = 13
    +  0110    +    0+4+2+0 =  6
    -------    -----------------
      10011      16+0+0+2+1 = 19
    ```
* Les entiers sur un ordinateur ont une précision **fixée** (ici 4 bits).
* Que se passe-t-il donc ici?

. . .

## Dépassement de capacité: le nombre est "tronqué"

* `10011 (19) -> 0011 (3)`.
* On fait "le tour"."

# Entier non-signés minimal/maximal

* Quel est l'entier non-signé maximal représentable avec 4 bit?

. . .

$$
(1111)_2 = 8+4+2+1 = 15
$$

* Quel est l'entier non-signé minimal représentable avec 4 bit?

. . .

$$
(0000)_2 = 0+0+0+0 = 0
$$

* Quel est l'entier non-signé min/max représentable avec N bit?

. . .

$$
0\mbox{ et  }2^N-1.
$$

* Donc `uint32_t?` maximal est?

. . .

$$
4294967295
$$


# Les multiplications en binaire (1/2)

Que donne la multiplication de `1101` avec `0110`?

* L'addition est la même que dans le système décimal

    ```
         1101                13
    *    0110    *            6
    ---------    --------------
         0000                78
        11010
       110100
    + 0000000
    ---------    --------------
      1001110    64+0+0+8+4+2+0
    ```

# Les multiplications en binaire (2/2)

## Que fait la multiplication par 2?

. . .

* Décalage de un bit vers la gauche!

    ```
         0110
    *    0010
    ---------
         0000
    +   01100
    ---------
        01100
    ```

. . .

## Que fait la multiplication par $2^N$?

. . .

* Décalade de $N$ bits vers la gauche!

# Entiers signés (1/2)

Pas de nombres négatifs encore...

## Comment faire?

. . .

## Solution naïve:

* On ajoute un bit de signe (le bit de poids fort):

    ```
    00000010: +2
    10000010: -2
    ```

## Problèmes?

. . .

* Il y a deux zéros (pas trop grave): `10000000` et `00000000`
* Les additions différentes que pour les non-signés (très grave)
    
    ```
      00000010              2    
    + 10000100           + -4
    ----------           ----
      10000110 = -6  !=    -2
    ```

# Entiers signés (2/2)

## Beaucoup mieux

* Complément à un:
    * on inverse tous les bits: `1001 => 0110`.

## Encore un peu mieux

* Complément à deux:
    * on inverse tous les bits,
    * on ajoute 1 (on ignore les dépassements).

. . .

* Comment écrit-on `-4` en 8 bits?

. . .

```
     4 =  00000100
            ________
    -4 =>   00000100
            
            11111011
          + 00000001 
          ----------
            11111100
```

# Le complément à 2 (1/2)

## Questions:

* Comment on écrit `+0` et `-0`?
* Comment calcule-t-on `2 + (-4)`?
* Quel est le complément à 2 de `1000 0000`?

. . .

## Réponses

* Comment on écrit `+0` et `-0`?

    ```
    +0 = 00000000
    -0 = 11111111 + 00000001 = 100000000 => 00000000 
    ```
* Comment calcule-t-on `2 + (-4)`?

    ```
      00000010            2
    + 11111100        +  -4
    ----------        -----
      11111110           -2
    ```
* En effet

    ```
    11111110 => 00000001 + 00000001 = 00000010 = 2.
    ```

# Le complément à 2 (1/2)

## Quels sont les entiers représentables en 8 bits?

. . .

```
01111111 =>  127
10000000 => -128 // par définition
```

## Quels sont les entiers représentables sur $N$ bits?

. . .

$$
-2^{N-1} ... 2^{N-1}-1.
$$

## Remarque: dépassement de capacité en `C`

* Comportement indéfini!

# Nombres à virgule (1/N)

## Comment manipuler des nombres à virgule?

$$
0.1 + 0.2 = 0.3.
$$

Facile non?

. . .

## Et ça?

```C
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {
    float a = atof(argv[1]);
    float b = atof(argv[2]);
    printf("%.10f\n", (double)(a + b));
}
```

. . .

## Que se passe-t-il donc?

# Nombres à virgule (2/N)

## Nombres à virgule fixe

+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| $2^3$ | $2^2$ | $2^1$ | $2^0$ | `.` | $2^{-1}$ | $2^{-2}$ | $2^{-3}$ | $2^{-4}$ |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| `1`   | `0`   | `1`   |  `0`  | `.` | `0`      | `1`      | `0`      | `1`      |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+

$$
2^3+2^1+\frac{1}{2^2}+\frac{1}{2^4} = 8+2+0.5+0.0625=10.5625.
$$

## Limites

* Nombres de $0=0000.0000$ à $15.9375=1111.1111$.
* Beaucoup de "trous" (au moins $0.0625$) entre deux nombres.

<!-- # TODO --

<!-- ## Entiers, entiers non-signés -->

<!-- ## Complément à 1, 2 -->

<!-- ## Nombres à virgule flottante, simple/double précision -->

# Types composés: `struct`{.C} (1/6)

## Fractions

* Numérateur: `int num`;
* Dénominateur: `int denom`.

## Addition

```C
int num1 = 1, denom1 = 2;
int num2 = 1, denom2 = 3;
int num3 = num1 * denom2 + num2 * denom1;
int denom3 = denom1 * denom2;
```

## Pas super pratique....

# Types composés: `struct`{.C} (2/6)

## On peut faire mieux

* Plusieurs variables qu'on aimerait regrouper dans un seul type: `struct`{.C}.

```C
struct fraction { // déclaration du type
    int32_t num, denom;
}

struct fraction frac; // déclaration de frac
```

# Types composés: `struct`{.C} (3/6)

## Simplifications

- `typedef`{.C} permet de définir un nouveau type.

    ```C
    typedef unsinged int uint;
    typedef struct fraction fraction_t;
    typedef struct fraction {
        int32_t num, denom;
    } fraction_t;
    ```
- L'initialisation peut aussi se faire avec

    ```C
    fraction_t frac = {1, -2}; // num = 1, denom = -2
    fraction_t frac = {.denom = 1, .num = -2};
    fraction_t frac = {.denom = 1}; // argl! .num non initialisé 
    fraction_t frac2 = frac; // copie
    ```

# Types composés: `struct`{.C} (4/6)

## Pointeurs

- Comme pour tout type, on peut avoir des pointeurs vers un `struct`{.C}.
- Les champs sont accessible avec le sélecteur `->`{.C}

    ```C
    fraction_t *frac; // on crée un pointeur
    frac->num = 1;    // seg fault...
    frac->denom = -1; // mémoire pas allouée.
    ```

![La représentation mémoire de
`fraction_t`.](figs/pointer_struct.svg){width=50%}

# Types composés: `struct`{.C} (5/6)

## Initialisation

- Avec le passage par **référence** on peut modifier un struct *en place*.
- Les champs sont accessible avec le sélecteur `->`{.C}

    ```C
    void fraction_init(fraction_t *frac, 
                      int32_t re, int32_t im) 
    {
        // frac a déjà été allouée
        frac->num   = frac;
        frac->denom = denom;
    }
    int main() {
        fraction_t frac; // on alloue une fraction
        fraction_init(&frac, 2, -1); // on l'initialise
    }
    ```

# Types composés: `struct`{.C} (6/6)

## Initialisation version copie

* On peut allouer une fraction, l'initialiser et le retourner.
* La valeur retournée peut être copiée dans une nouvelle structure.

    ```C
    fraction_t fraction_create(int32_t re, int32_t im) {
        fraction_t frac;
        frac.num = re;
        frac.denom = im;
        return frac;
    }
    int main() {
        // on crée une fraction et on l'initialise
        // en copiant la fraction créé par fraction_create
        // deux allocation et une copie
        fraction_t frac = fraction_create(2, -1); 
    }
    ```

# TODO jusqu'aux vacances

* Refactorisation
* Tris et complexité
* Récursivité