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Thank you note

Thanks to Prof. Ada Gavrilovska at Georgia Institute of Technology for
allowing me to use some of her “Introduction to Operating Systems”

course's content
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What is Platform virtualization?

e Virtualization of a whole hardware 7

platform — allows concurrent execution App APD]APD

- N )
AppTApp TApp

of multiple OS on the same physical Operating System | | Operating system

machine (host system)

= EH = EH

e Virtual machine (VM), also called guest

Virtualization Layer

domain = efficient, isolated duplicate

. . x86 Architecture
of the real physical machine

Memory

e A VM is supported by a virtualization

layer = virtual machine monitor The OS running in the VM is
(VMM) or hypervisor called the Guest OS
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Virtual Machine

Formal Requirements
The term “Virtual Machine” (VM) f()r Vil’tualizable
was originally defined by Popek and Thll'd Generaﬁon
Goldberg in 1974 Architectures

“ fficient, isolated duplicate Gerald J. Popek
An eflicient, iso P University of California, Los Angeles

of a real computer machine” and
P Robert P. Goldberg

Honeywell Information Systems and
Harvard University
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Popek and Goldberg requirements for a VMM

In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1.
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Popek and Goldberg requirements for a VMM

In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1. Equivalence: provide an environment essentially identical to the original

machine

e software on the VMM executes nearly identically to how it would on the

real hardware

2. Efficiency: most machine instructions must be executed by the guest OS

without VMM intervention

e machine instructions run directly on the underlying hardware
3. Isolation: VMM is in complete control of the virtualized resources (hardware)

e provides isolation and security
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Quiz: VMM

Based on the historical definition of Popek & Goldberg, which of the following is a VMM?

We consider the following host: CPU Intel Core i7, VGA card, Intel Pro 1000 network card, IDE
P11X disk controller

e Java Virtual Machine (JVM)

>
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Modern VMM definition

e Popek and Goldberg's efficiency and isolation requirements for a
VMM remain true to this day

e However, equivalence is not a requirement anymore

e Nowadays, VMMs might expose different hardware devices
(excluding the CPU architecture) than the physical hardware present on
the host and still be called a VMM
> most VMM s fall in this category
> in fact, for performance reasons, most VMMs expose virtual hardware

devices instead
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Platform virtualization

e Sometimes called “hardware virtualization”
e Type of virtualization that virtualizes a whole machine

e Three main components must be virtualized:
> CPU
> memory (MMU - Memory Managing Unit)

> devices (also called Input/Output or I/O): hard drive, disk
controllers, display, mouse, keyboard, etc.
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Privilege levels and traps




OIS CREVER

For a traditional OS! to provide security and control over user applications, a
y

CPU must provide at least 2 privilege levels:

e Privileged (or supervisor): the execution level used by the OS’ kernel
> the kernel has access to all instructions and fully controls the CPU

e Unprivileged (or user): the execution level used by user applications
> only a subset of instructions is allowed; executing a privileged
instruction raises a trap which can then be intercepted by the kernel,

which then decides what to do, e.g. segmentation fault in UNIX

1By opposition to other types of OSes, such as realtime OSes for embedded systems

for instance
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e A trap is raised when an instruction cannot be fulfilled by the CPU

e Typical trap examples:

> a unprivileged code attempts to execute a privileged instruction,
for instance:
— disable hardware interrupts
— modify the CPU flags register
— halt the CPU

> an unprivileged code attempts to read or write from a device (I1/0)

> a code attempts to address (read or write) a memory address that
has no mapping
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Reminder: privilege levels, kernel and applications

Application execution when executed on top of an OS (kernel) without

any virtualization:

Unprivileged User
CPU level Apps User apps access
hardware through
Privileged o system calls
erne
CPU level Kernel accesses
hardware on apps’
Hardware behalf

Without system calls, apps accessing hardware would trigger traps and be

likely terminated (killed) by kernel
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Platform virtualization:
CPU virtualization




CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

e Full virtualization using Trap-and-Emulate (historical)
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CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

e Full virtualization using Trap-and-Emulate (historical)
e Full virtualization using Dynamic Binary Translation
e Hardware-assisted full virtualization

e Paravirtualization

Here, we present these techniques and their history, starting with the
first platform virtualization implementation with IBM System /360 CP-67

mainframes, then by VMware's implementation for the PC architecture
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CPU virtualization: full virtualization using Trap-and-Emulate

IBM CP-67 added a new hypervisor CPU privilege level (more privileged
than the traditionnal privileged level) used by the VMM:

e Most guest OS instructions (non-
privileged) are executed directly

> they run at native speed — efficient

e Privileged instructions trigger a trap to
the VMM
> VMM then emulates the behavior
the guest OS is expecting from the

hardware

Unprivileged User
CPU level Apps

PriVileged GueSt OS

CPU level
Hypervisor
CPU level [ VMM
Host
Hardware

)

User apps
access hardware
through system
calls

OS privileged
instructions trap
to VMM which
emulates the
expected behavior

Used on IBM mainframes since the 1970s
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Market changes

e From the 1970s until the mid-1990s, platform virtualization was almost

exclusively used on mainframes

e Platform virtualization through Trap-and-Emulate worked well on

mainframes because their CPUs were designed to support it

e Starting in the mid-1990s, as PC (x86 architecture) became more

powerful, platform virtualization became a technology of interest
e Attempts were made to implement Trap-and-Emulate for the PC

e However...
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x86 CPU privilege levels (protection)

e Intel 32-bit architecture released
in 1985 with the Intel 80386 CPU
features 4 protection levels?,

Least privileged

called rings:

Most privileged

> OS (kernel) runs in ring 0

> Applications run in ring 3

LAMD released the AM386 in 1991, featuring the same architecture; this lead to the
creation of the “IA-32" name for the same architecture, which is vendor-agnostic

2Still the case today with the latest Intel /AMD CPUs!
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CPU virtualization: attempt at Trap-and-Emulate on x86

Basic idea:

e Guest OS applications

run in ring 3

e Guest OS kernel runs

In ring 1
¢ VMM runs in ring O

Ring 3 X;Ie);
Ring 2
Ring 1 | Guest OS
Ring 0 VMM
Host
Hardware

User apps access
hardware through
system calls

OS privileged
instructions trap
to VMM which
emulates the
expected behavior
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Issue with Trap-and-Emulate on x86

e The Trap-and-Emulate model did not work on x86!
e On 80386 and later Intel/AMD CPUs (Pentium, etc.):

> 17 privileged instructions do not trigger a trap when they should
— instead, they fail silently! (don't pass control back to the VMM)
— VMM: doesn't know — cannot emulate the expected behavior!

— guest OS: doesn't know — believes operation was successful!

> Example: interrupt enable/disable bit in eflags register; pushf/popf
instructions that access it from ring 1 fail silently
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Trap-and-Emulate on x86: what to do?

e The Trap-and-Emulate model does not work on x86
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Trap-and-Emulate on x86: what to do?

e The Trap-and-Emulate model does not work on x86
e Therefore, the x86 architecture cannot be virtualized!

e What to do?

e Mendel Rosenblum’s research group at Stanford University came-up

with a novel idea to implement CPU virtualization:

Dynamic Binary Transation
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CPU full virtualization: Dynamic Binary Translation

e Mendel Rosenblum’s idea was commercialized as VMware! in 1998

e Basic idea: VMM modifies the guest OS’ kernel code at runtime to

avoid using the 17 “problem’ instructions
e The guest OS is unaware it's being modified!

e Goal: avoid modifying the guest OS kernel’ source code!
> required in order to work with any guest OS kernel (e.g. Windows)

10One of VMware's five co-founders is Swiss computer scientist Edouard Bugnion
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CPU full virtualization: Dynamic Binary Translation

e Dynamically capture code blocks

U
e Inspect code blocks to be executed Ring 3 A;[e);
for the 17 “problem” instructions LI ETIS IR
_ hardware through
Ring 2 system calls

e When needed, translate to alternate

VMM performs
Trap-and-Emulate
but also dynami-
cally translates
sensitives instru-

instructions sequence, to emulate Ring 1 | Guest OS

desired behavior and avoid traps

e Otherwise, which is most of the time Ring 0 | VMM

— run at native speed ctions to emulate
Host the desired
e Speed optimization: cache translated Hardware behavior

blocks to amortize translation costs
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Dynamic Binary Translation: pros and cons

e Pros
> guest OS kernel’ source code does not need to be modified — can

run on proprietary kernels (e.g. Windows)

e Cons
> inefficient — low performance

> complex implementation

How to improve performance?
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CPU paravirtualization: concept

e Improve performance by avoiding the overhead/complexity required

to support unmodified guest OS’ kernel

e Modify the guest OS’ kernel so that it can request services from the
VMM

e Pioneered by the Xen hypervisor at the University of Cambridge (UK)
in 2003
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CPU paravirtualization

e Guest OS’ kernel source code is slightly
modified (only a few %)

e Guest OS knows it's running on top of a
VMM

e For privilege operations, guest OS
requests services from the VMM
through hypercalls

R

e Hypercalls from guest OS to VMM

system calls from user apps to kernel

User
Ring 3
ing e
Ring 2
_ Paravirtualized
Ring 1| Guest OS
Ring 0 VMM
Host
Hardware

User apps access
hardware through
system calls

Guest OS makes
hypercalls to the
VMM to request
privileged services,
VMM in turns
executes privileged
operations
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Paravirt. vs Dynamic Binary Translation performance comparison
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CPU paravirtualization: pros and cons

e Pros
> much better performance than Dynamic Binary Translation
> much simpler to implement than Dynamic Binary Translation

e Cons
> guest OS kernel’ source code must be modified — cannot run on

closed-source kernels (e.g. Windows)
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CPU: the need for platform virtualization

e Since 2005, new hardware instructions for virtualization are integrated
into Intel/AMD CPUs

e These instructions are called:
> Intel VT-x for Intel CPUs
» AMD-V Pacifica for AMD CPUs

e Goal: to solve the issue with the 17 “problem” instructions

Starting in 2005, the x86 architecture can finally be
virtualized similarly to IBM mainframes in 1970s!
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CPU full virtualization: hardware-assisted

Root CPU mode Non-root CPU mode
e Intel VT-x and AMD-V R : ot :
" - . P User :
provide hardware-assisted! : Ring3 i Ring3 | Apns
virtualization instructions Ring 2 | OSprivileged | o
: : instructions trap
> add new CPU modes: i to VMM without
: Ring 1 Dynamic Binary : Ring 1
root?/non-root { Translation or i
i paravirtualization :
> VMM runs in root mode i Ring0 | VMM i Ring 0 | Guest OS
> Guest OS runs in non- | Host >: : Host
Hardware v Hardware -
root mode PN

lAlso called “Accelerated Virtualization” and “Hardware Virtual Machine” (HVM)

2Completely unrelated to root user in Linux/UNIX!
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CPU hardware-assisted virtualization, root/non-root modes

e VMM runs in root mode:
> ring 0: VMM

e Guest OS runs in non-root mode:
> ring 3: user applications

> ring 0: kernel

e In non-root mode, certain
privileged operations trigger traps

(VMexits) — trigger switch to
root mode (VMM)

root mode

(host)

VMexit
(trap)

non-root
mode (guest)
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CPU hardware-assisted virtualization: pros and cons

e Pros

> guest OS kernel’ source code does not need to be modified (as with

CPU paravirtualization)

> much more efficient than Dynamic Binary Translation, thanks to

dedicated hardware instructions

e Cons

> only available if CPU implements the dedicated hardware instructions
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Platform virtualization:

device virtualization




Device virtualization techniques

Devices can be virtualized using 4 techniques:

'\WWe won't present it here
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Device virtualization techniques

Devices can be virtualized using 4 techniques:

e Full virtualization using emulation

e Hardware-assisted full virtualization (using VT-d hardware)?
e Paravirtualization

e Passthrough

'\WWe won't present it here
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VM presents a “real’ device to the guest OS

Guest OS must have drivers for the real device

VMM intercepts all device accesses

VMM emulates a real device that's likely not physically
present on the host

Pros

> VM decoupled from physical device _ _
> VM migration
> guest OS can run on real hardware o har
» device sharin

(provided it has the required drivers) s

Cons
> emulating a real device can be complex

> low performance due to lots of VM exits

Device virtualization: full virtualization using emulation

Guest OS

Driver for the
real device

\

Present the
real device

Emulation of

the real device]

2/

Physical device
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Reminder: OS kernel, drivers and user applications

e An OS is composed of: kernel, libraries, and user applications

e The kernel is composed of:
> the kernel itself

> drivers (to controls devices)

e Full kernel source code is not required to write drivers!
> anyone can write device drivers for proprietary OSes
> only the driver SDK! is required and available for all OSes

1Software Development Kit
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Device virtualization: paravirtualization

' ' 4 )
e VM presents a virtual device to the guest OS Guest OS
e Guest OS must have driver for the virtual device
e Driver much simpler than for a real device Driverforthe]
_ _ o _ virtual device
e Driver uses the virtual device's API to control it \ : )

> uses hypercalls 4+ shared memory to communicate with VMM -

> simple and highly efficient 4 v N\
Present the

e Pros virtual device

> VM decoupled from physical device o VMM :--i
> VM migration 4

Virtual device’s API
calls the host driver

a 5 )
e Cons .

» guest OS requires specific driver Y
Physical device

> no need to emulate a real device _ _
> device sharing

> easy to implement & high performance

» guest OS cannot run on real hardware
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Device virtualization: passthrough

e VMM gives guest OS exclusive direct access to
physical device
e Pros
> native (highest) performance
e Cons
> device cannot be shared (or very difficult)
> VM migration difficult
> host must have the exact device type expected
by the guest OS

[ Driver for the host ]

Guest OS

(physical) device

\

/

\

[

Access management
driver

J

.

AN

oo

Physical device
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Platform virtualization nowadays

Nowadays, VMMs that implement platform virtualization use a

combination of virtualization types:
e Hardware-assisted full virtualization for CPU and devices

e Paravirtualization for devices
> typically for performance-critical devices, such as disk and network

e Full virtualization (emulation) for devices
> typically used for better compatibility: when guest OS lacks

paravirtualized drivers
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Hypervisor models




Modern hypervisors

e All hypervisors are based on:

39 / 49



Modern hypervisors

e All hypervisors are based on:

> hardware assisted virtualization for the CPU

39 / 49



Modern hypervisors

e All hypervisors are based on:
> hardware assisted virtualization for the CPU

> emulated real devices through full virtualization

39 / 49



Modern hypervisors

e All hypervisors are based on:
> hardware assisted virtualization for the CPU
> emulated real devices through full virtualization

> paravirtualized “virtual (non-real)” devices
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Hypervisor models

Historically, hypervisors fall into two models:
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Historically, hypervisors fall into two models:

(a) hypervisor that runs directly on the hardware
e minimalistic OS that has only one goal: to manage VMs
e much smaller complexity than a general OS

e historically called type-1 or baremetal hypervisors

(b)
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Hypervisor models

Historically, hypervisors fall into two models:

(a) hypervisor that runs directly on the hardware
e minimalistic OS that has only one goal: to manage VMs
e much smaller complexity than a general OS
e historically called type-1 or baremetal hypervisors
(b) OS kernel modified to add a virtualization layer
e ‘transform’ a general-purpose OS into a hypervisor

e historically called type-2 or hosted hypervisors

Nowadays, it's not so clear cut, for instance, Linux/KVM is classified as

either type-2 or type-1, depending on the source
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KVM (“Kernel Virtual Machine”) + QEMU (a)

Linux kernel module that provides hardware-assisted virtualization

Exposes a user-space virtualization
API

Requires VT-x or AMD-V

Linux kernel provides hardware
management 4+ runs regular Linux
applications

VMs support through QEMU which
uses the KVM API

First released in 2006

(" QEMU

QEMU Regular Regular
Guest Guest Linux Linux
\ VM VM App App
( N
kv[n.ko Linux

kvm-intel.ko kernel Device | | Device

Modules Driver | | Driver
\. Y,

Hardware
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VirtualBox (a)

Similar model to KVM 4+ QEMU

e Uses its own kernel module which

provides similar features to KVM Virtualbox | (Virtualbox Y ( reguiar |[ Regular
: : Linux Linux
> however, since early 2024 it can Syt Syt e App

o

also use KVM p N
boxdrv.k Li
e Developed by Innotek in 2007 [Vnﬁﬁdmf] kérr‘rl::l [%fi\cgf] %fi\c;e]
(acquired by Sun Microsystems in = Z
2008, in turn acquired by Oracle in Hardware

2010)
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VMware Workstation (a)

Similar model to KVM 4+ QEMU and VirtualBox

(Norkstation Workstation

Regular Regular
Guest Guest Linux Linux
I : A A
e Uses its own kernel module which (LYM M PP PP

. .. p 4
provides similar features to KVM |

vmmon.ko Linux - '

Module kernel [DeVlce] Device

Driver Driver

e First released in 1999 .

J

Hardware
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VMware ESXi (b)

VMM manages all hardware resources and supports execution of VMs

Device manufacturers provide

device drivers for the hypervisor

Limited hardware support: ESXi
only available for dedicated
servers with compatible/supported
hardware

First released in 2001

(

Guest
VM

N

(

J

\

\

Guest
VM

4

J

.

Guest
VM

VMware ESXi VMM

Hardware
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VMM manages all hardware resources and supports execution of VMs

e Create a privileged VM (dom0) that runs

4 N
Linux OS with full hardware privileges (qu{no ; domu domu

. . rivilege VM VM

> run all device drivers VM) feastehul | (et i)

L y

> manage unprivileged VMs (domU) r A
X . _ . Xen VMM

system configuration and management, L )

e.g. how VMM share resources across ( ]
Hardware

VMs \ /

> uses QEMU for emulation of physical First released in 2003

devices
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Microsoft Hyper-V (b)

VMM manages all hardware resources and supports execution of VMs

Hyper-V High Level Architecture

e Parent partition runs Windows Server e tnenightenea

OS with full hardware privileges | &F |

» direct access to hardware devices — TR ?

> create/manage child partitions which Lsi;ék\ ml_ {sifi\ EE | (| == -

host VMSs with guest OS —] —]
Bk o[ =

> system config and management | : | |
e Similar model® to XEN e (| (] [] [ | o] [
e First released in Windows Server 2008 L

Lhttps: / /learn.microsoft.com /en-us/virtualization /hyper-v-on-windows /reference /

hyper-v-architecture
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Additionnal examples

e FreeBSD bhyve — similar model to KVM (a)
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Additionnal examples

e FreeBSD bhyve — similar model to KVM (a)

e VVMware Fusion — similar model to VirtualBox (a)

e Apple Hypervisor for OSX (hvf) — similar model to KVM (a)
e Citrix Hypervisor — similar model to Xen (b)

e VVMware Player — similar model to VMware Fusion (a)
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What's used out there?

e Amazon AWS & EC2 — from Xen to Nitro which is a stripped-down
version of KVM 4+ QEMU
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What's used out there?

e Amazon AWS & EC2 — from Xen to Nitro which is a stripped-down
version of KVM 4+ QEMU

e Microsoft Azure — Hyper-V

e Google Cloud Platform — KVM + QEMU

e Most cloud providers (e.g. DigitalOcean) — KVM + QEMU

e Everything OpenStack — generally powered by KVM + QEMU

e VVMware remains leader in solutions for business/private environments
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