
QEMU

Florent Glück - florent.gluck@hesge.ch

March 17, 2025

ISC - HEPIA

Introduction to QEMU

What is QEMU?

• QEMU (Quick EMUlator - https://qemu.org is an open source machine
emulator and hosted VMM

• Feature full virtualization of the CPU through Dynamic Binary Translation

• Can use hardware-assisted virtualization such as kvm, xen, whpx1, hvf2, etc.
‣ they all require Intel VT-x or AMD-V

• Emulate many hardware platforms and devices, real and virtual ones

• Emulate user-level processes → allow applications compiled for one architecture
to run on another

1Windows Hypervisor Platform
2Apple Hypervisor Framework

2 / 81

https://qemu.org

Why QEMU?

To quote a great hacker, Drew DeVault1:

QEMU is fast, portable, better supported by guests, and has more
features than Hollywood.

There’s nothing other hypervisors can do that QEMU can’t, and there’s
plenty QEMU can that they cannot.

1Drew DeVault’s blog: https://drewdevault.com
3 / 81

https://drewdevault.com

A bit of history

• QEMU started in 2003 by jedi master programmer Fabrice Bellard
‣ author of FFMPEG, JSLinux and many other projects1

• Origin of QEMU: portable Just In Time translation engine for cross
architecture emulation

• QEMU quickly grew to system emulation

• QEMU started with PC hardware, but now support many more: ARM,
RISC-V, MIPS, PowerPC, Alpha, Sparc, SH4, etc.

1More here: https://bellard.org
4 / 81

https://bellard.org

Where is QEMU being used?

• Cloud computing:
‣ everything OpenStack
‣ along KVM and Xen guests

• Cross-compilation development environments

• Android Emulator (part of SDK) (fork)

• Almost every embedded SDK out there

5 / 81

What can QEMU do?

• Run OS for a given architecture (i386, AMD64, ARM, RISC-V, Sparc,
MIPS, etc.) on any other architecture

• Can run any OS as a user application
‣ complete with graphics, sound, and network support
‣ don’t need to be root!

• Descent emulation performance for real world OS
‣ orders of magnitude faster than Wind River Simics (simulator)

• QEMU can interact with guest OS

6 / 81

QEMU principle

When creating and running a VM with QEMU:

• Hardware configuration is specified on the command line (by
default)1

• Hard disks are represented as files (disk images)

1by opposition to VirtualBox and VMWare which store configuration in a file
7 / 81

QEMU usage

• Binary for AMD64 (Intel/AMD 64-bit architecture) is qemu-system-x86_64

• On Debian/Ubuntu, install qemu-system-x86 and qemu-system-gui packages

• Typical use:
1. create an image disk with qemu-img (once)
2. run qemu-system-x86_64 which configures the VM’s hardware and run it:

QEMU usage example
qemu-system-x86_64 -smp cpus=1 -m 4G -hda disk.qcow -cdrom
debian-12.1.0-amd64-netinst.iso

• QEMU manual and options with:

man qemu-system-x86_64 # or: qemu-system-x86_64 --help

8 / 81

QEMU nested virtualization

• QEMU can expose the host’s CPU with all supported features, notably
hardware virtualization instructions, with:

-cpu host

• -cpu host provides nested virtualization
‣ it allows to run an hypervisor inside an hypervisor (a VM inside a

VM)!

9 / 81

QEMU with KVM

Can a host run KVM? (1/2)

• QEMU can use hardware-assisted virtualization provided by the
underlying hypervisor: kvm, xen, whpx, etc.

• To check for hardware virtualization support (Intel or AMD) on Linux:

$ lscpu|grep Flags|grep "vmx\|svm"
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb
rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx
est tm2 ssse3 sdbg fma cx16 xtpr pdcm ...

• Should see vmx (Intel) or svm (AMD) if hardware virtualization is
present

11 / 81

Can a host run KVM? (1/2)

• Check that both kvm and either kvm_intel or kvm_amd modules are
loaded into the kernel:

$ lsmod|grep kvm
kvm_intel 487424 4
kvm 1437696 3 kvm_intel
irqbypass 12288 1 kvm

• To load a module, use the modprobe command (as root)

• For instance, to load the kvm module (use -r to unload it):

sudo modprobe kvm

12 / 81

Accessing KVM

• To access the KVM device, /dev/kvm, one must either (depending on
the Linux distribution):
‣ be in the kvm group1

‣ have the proper ACL permissions2

• Typical examples of KVM API use:
‣ QEMU when launched with -machine accel=kvm
‣ any other Linux-based hypervisor using KVM
‣ any application using /dev/kvm, typically a custom hypervisor

1https://linuxize.com/post/how-to-add-user-to-group-in-linux/
2https://www.redhat.com/sysadmin/linux-access-control-lists

13 / 81

https://linuxize.com/post/how-to-add-user-to-group-in-linux/
https://www.redhat.com/sysadmin/linux-access-control-lists

Devices in QEMU

QEMU devices

• QEMU supports a very large number of devices, including CPU
architectures:
‣ emulated devices, seen as real devices by the guest OS
‣ paravirtualized devices, seen as virtual devices by the guest OS

• To list all supported devices:

qemu-system-x86_64 -device help

• To list supported options for a specific device, use this syntax:

qemu-system-x86_64 -device rtl8139,help
qemu-system-x86_64 -device virtio-net-pci,help

15 / 81

Device types (from QEMU point of view)

Emulated: IDE, SATA, SCSI disk controlers, network cards, etc.
• Good compatibility (drivers usually present in guest OS)
• Low performance

Paravirtualized: virtio devices
• Good performance
• Require dedicated paravirtualized drivers in guest OS
‣ drivers usually present when using Linux as guest OS

Passthrough: via VFIO
• Best, near native performance
• Limited number of PCI devices supported
• Tricky live migration
• Requires VT-d hardware extension

16 / 81

Virtio framework

• Specification for paravirtualized device (I/O) virtualization

• Abstraction layer over the hardware (devices)
‣ common API for all paravirtualized devices

• Use shared memory (ring buffer) between QEMU ↔ guest OS

• Virtio provides:
‣ device detection mechanism at boot (probing)
‣ classes of virtual devices (network, block, memory, etc.)
‣ common I/O registers
‣ virtual queues (shared memory)

17 / 81

Virtio vs emulated driver

18 / 81

Virtio architecture

Frontend driver (in guest OS)
• Kernel module (driver) in guest OS
‣ usually contains virtio in its name

• Accepts I/O requests from user process
• Transfer I/O requests to backend driver using hypercalls

Backend driver (in VMM, e.g. QEMU)
• A virtio virtual (paravirtualized) device in QEMU (e.g. virtio-disk)
• Accepts I/O requests from frontend driver
• Perform I/O operations via physical device through the host OS

19 / 81

Optimized devices for Linux guest

• Uses hardware assisted virtualization with KVM:
-machine accel=kvm

• Uses 2 virtual CPUs (vCPUs) and 4GB of RAM:
-smp cpus=2 -m 4096

• Uses a paravirtualized graphics card:
-vga virtio

• Uses a paravirtualized NIC and provides Internet access to the guest:
-nic user,model=virtio

• Uses a paravirtualized disk controller and use disk.qcow as a disk:
-drive file=disk.qcow,index=0,media=disk,format=qcow2,if=virtio

20 / 81

Storage in QEMU

Storage devices in hypervisors

• Storage devices are anything that can store content: hard drive, flash
drive (SDD, USB key, SD card, etc.), DVD-ROM, CD-ROM, etc.

• Guest OSes manipulate and access storage devices as if they were
physically present on the system

• However, on VMM side, physical storage devices are simply… files!

• VMM presents these files as if they were physical storage devices to the
guest

• These files are called disk images

22 / 81

QEMU disk images

• QEMU supports many disk image formats:
‣ qcow2, qed, vmdk, vhd, vdi, raw, rbd, nbd, tftp, ftp, vvfat, ftps,

dmg, iscsi, parallels, bochs, quorum, etc.

• Use qemu-img tool to manipulate images:
‣ create images
‣ convert among image formats
‣ resize images
‣ manage disk snapshots
‣ etc.

23 / 81

Recommended disk image formats

• qcow2: native QEMU image format
‣ most versatile and flexible
‣ many features: thin provisioning, encryption, compression, snapshots, etc.
‣ only stores used blocks (regardless of underlying filesystem)
‣ does not require a filesystem supporting sparse files

• raw: raw disk image format
‣ image of a physical hard disk (simply a series of sectors)
‣ simple and very portable (exportable to other VMMs)
‣ best portability and performance, but few features
‣ only stores used blocks if sparse files supported by the filesystem

– otherwise zeroes are stored on disk 🙁
24 / 81

Inspecting/modifying VM disk image files (1/3)

guestfish

• Shell and command-line tool for examining and modifying a VM disk
image’s filesystem
guestfish --ro -a disk.qcow -i ls /home/zorglub/
guestfish --ro -a disk.qcow -i cat /etc/group

guestmount

• Mount a disk image’s filesystem on the host using FUSE1 and libguestfs
guestmount -a disk.qcow -m /dev/vda1 my_mount_dir

1https://en.wikipedia.org/wiki/Filesystem_in_Userspace
25 / 81

https://en.wikipedia.org/wiki/Filesystem_in_Userspace

Inspecting/modifying VM disk image files (2/3)

guestfs-tools Debian/Ubuntu package provides many useful tools:

virt-rescue run a rescue shell on a VM
virt-builder build VM images quickly
virt-copy-out copy files and dirs out of a VM disk image
virt-copy-in copy files and dirs into a VM disk image
virt-resize resize a VM disk
virt-sparsify make a VM disk sparse
virt-edit edit a file in a VM
virt-ls list files in a VM
virt-filesystems list filesystems, partitions, block devices, in a disk image

Read the man for usage examples!
26 / 81

Inspecting/modifying VM disk image files (3/3)

• Tools from previous slides use libguestfs from the guestfs-tools
Debian package

• These tools must not be run as root!

• However, on Ubuntu /boot/vmlinuz* has the wrong permissions
preventing them from being used as non-root user
‣ permissions must be changed with:

sudo chmod 0644 /boot/vmlinuz*

27 / 81

https://libguestfs.org/guestfs-faq.1.html

Sparse files

Sparse files

• A sparse file is a file that does not store
unused space (or holes)

• Data blocks containing no data (zeros)
are not stored to disk

• Supported by most modern filesystems:
‣ ext4, xfs, ntfs, btrfs do

• ⚠ However, not always supported ⚠
‣ FAT filesystems, scp, Dropbox, etc.

• Proper sparse files support requires
support from both, filesystem and
application

29 / 81

Handling sparse files

• To create a 10MB sparse file:
truncate -s 10M myfile
dd if=/dev/zero of=myfile bs=10M count=1 conv=sparse

• To display a file’s real allocated space (usually in blocks of 1024 bytes):
ls -s file
du file

• To convert a file into a sparse file:
fallocate -v -d file

• To convert a sparse file into a non-sparse file:
cp file nonsparse_file --sparse=never

30 / 81

Copying sparse files

• Linux cp command transparently handles copy of sparse files
‣ if unsure, use:

cp --sparse=always

• Transfering sparse files over the network is usually not supported!
‣ files lose their sparse property!
‣ server and client must both implement support for sparse files
‣ ⚠ scp does not support sparse files!
‣ use rsync over scp instead (using ssh key pairs)

rsync -P --sparse source_file destination_machine:

31 / 81

Interacting with guest OS

Port forwarding

Traffic to a port on the host can be forwarded to a port in the guest

• Here, we forward TCP traffic from port 8000 on the localhost interface
(127.0.0.1) on the host, to port 22 in the guest1:

-nic user,hostfwd=tcp:127.0.0.1:8000-:22

• Then, to connect to a ssh server listening on port 22 in the guest:

ssh janedoe@localhost -p 8000

1The option model=virtio can be added to use a paravirtualized network card
33 / 81

Shared directories

• QEMU uses the 9p protocol and virtio driver to share directory between host and
guest OS
‣ same directory can be shared by multiple guest OS

• Host: run QEMU with these additionnal arguments, where MOUNT_TAG is the share
name:

-virtfs local,path=PATH_TO_SHARE,mount_tag=MOUNT_TAG,security_model=mapped

• Guest OS: mount the virtual filesystem, specifying the 9p type:

sudo mount -t 9p MOUNT_TAG MOUNT_DIR

‣ requires 9p, 9pnet, and 9pnet_virtio kernel modules
– mount loads them automatically

34 / 81

https://en.wikipedia.org/wiki/9P_(protocol)

QEMU Guest Agent (QGA)

QGA is a mechanism that allows the VMM to interact with the guest OS

• QGA must be installed in guest OS
‣ typically the qemu-ga service (daemon)

• Allows QEMU to perform many operations:
‣ get guest OS information
‣ read/write a file in guest OS
‣ sync and freeze the filesystems
‣ shutdown/reset/suspend guest OS
‣ etc.

• Uses QEMU Guest Agent Protocol to exchange messages via a UNIX socket

35 / 81

QEMU ↔ OS guest communication via QGA

36 / 81

QGA principle

• VM must be created with a special paravirtualized QGA device

• In guest OS, this device is exposed in /dev
‣ e.g. /dev/virtio-ports/org.qemu.guest_agent.0
‣ possible to read/write from/to it

• On the host, this device is a socket created in the filesystem
‣ e.g. /tmp/qga.sock
‣ possible to read/write from/to it

• On the host, we write QGA commands and read values returned by guest OS
‣ commands/responses are serialized as JSON objects
‣ commands are asynchronous!

37 / 81

Using QEMU Guest Agent (1/2)

1. VM must be started with these additional arguments:

-device virtio-serial
-device virtserialport,chardev=qga0,name=org.qemu.guest_agent.0
-chardev socket,path=/tmp/qga.sock,server=on,wait=off,id=qga0

• creates /tmp/qga.sock UNIX socket on the host
• creates /dev/virtio-ports/org.qemu.guest_agent.0 device in

guest OS

38 / 81

Using QEMU Guest Agent (2/2)

2. In guest OS, qemu-guest-agent must be installed:

sudo apt-get install qemu-guest-agent

• installs /usr/sbin/qemu-ga daemon

3. In guest OS, enable and start the service with (usually not needed):

sudo systemctl enable qemu-guest-agent
sudo systemctl start qemu-guest-agent

39 / 81

QEMU Guest Agent commands: examples

• Obtain information about the guest OS:

{ echo '{"execute":"guest-info"}'; sleep 1; } | socat unix-connect:/tmp/qga.sock - |
aeson-pretty

• Shutdown guest OS:

{ echo '{"execute": "guest-shutdown"}'; sleep 1; } | socat unix-connect:/tmp/qga.sock
- | aeson-pretty

• Close a previously opened file on guest OS (here, handle 1000):

{ echo '{"execute":"guest-file-close", "arguments":{"handle":1000}}'; sleep 1; } |
socat unix-connect:/tmp/qga.sock - | aeson-pretty

The list of supported commands is available here
40 / 81

https://qemu.readthedocs.io/en/master/interop/qemu-ga-ref.html

Snapshots

What is a snapshot?

• A snapshot is a “view” of a VM at a given point in time

• Benefits:
‣ able to revert to a known specific state
‣ rapidly instantiate thin-provisoned or disposable VMs

42 / 81

QEMU snapshot scenarios

1. Save/restore a VM’ state - disk only
• disk snapshot

2. Save/restore a VM’ state - disk + RAM + devices
• VM snapshot

3. Instantiate a thin-provisoned or disposable VM
• disk snapshot

⚠ Most QEMU snapshots require qcow2 images!

43 / 81

QEMU snapshots storage policy

Internal snapshots

• All snapshots are stored inside the same qcow2 file

External snapshots

• Each snapshot is stored in a different qcow2 file
‣ chain of qcow2 files

44 / 81

QEMU disk snapshots

(1) Save/restore a VM’ state - disk only (internal snapshot)

First method, using internal snapshots

• Use qemu-img to manage the internal disk snapshots:

qemu-img snapshot -c <name> create an internal disk snapshot

qemu-img snapshot -d <name> delete an internal disk snapshot

qemu-img snapshot -a <name>
apply an internal disk snapshot (revert
disk to saved state)

qemu-img snapshot -l
list all internal snapshots in the image
(disk and VM)

⚠ Deleting internal snapshots does not reduce the image file size!
46 / 81

(1) Save/restore a VM’ state - disk only (external snapshot)

Second method, using external snapshots
• Concept: a disk image is composed of a base image plus a chain of

differences (overlays)

47 / 81

(1) Save/restore a VM’ state - disk only (external snapshot)

• If QEMU runs on Overlay A4, then the VM’s disk state is:
‣ Base + A1 + A2 + A3 + A4

• Base + A1 + A2 + A3 are all accessed in read-only

• A4 is accessed in read-write as it is the active disk image

• Running QEMU on a parent image invalidates all children images!
48 / 81

(1) Save/restore a VM’ state - disk only (external snapshot)

• If QEMU runs on Overlay A2, then the VM’s disk state is:
‣ Base + B1 + B2

• Base + B1 are accessed in read-only

• B2 is accessed in read-write as it is the active disk image

• Since B2 is the active image, B3 becomes invalid!
49 / 81

Create an external disk snapshot - example

To create the state1.qcow external disk snapshot (overlay) that will store
the differences from the base (backing) image file base.qcow:

qemu-img create -F qcow2 -b base.qcow -f qcow2 state1.qcow

• Here, QEMU is launched on
state1.qcow

• At any point, a new snapshot can
be added to a chain of snapshots

50 / 81

Chain of external disk snapshots

To display the chain of snapshots up to some state (here stateC1.qcow):

$ qemu-img info --backing-chain stateC1.qcow

image: stateC1.qcow
file format: qcow2
virtual size: 100 GiB (107374182400 bytes)
disk size: 196 KiB
cluster_size: 65536
backing file: base.qcow
backing file format: qcow2
Format specific information:
 compat: 1.1
 compression type: zlib
 lazy refcounts: false
 refcount bits: 16
 corrupt: false
 extended l2: false
Child node '/file':
 filename: stateC1.qcow
 protocol type: file
 file length: 194 KiB (198656 bytes)
 disk size: 196 KiB

image: base.qcow
file format: qcow2
virtual size: 100 GiB (107374182400 bytes)
disk size: 196 KiB
cluster_size: 65536
Format specific information:
 compat: 1.1
 compression type: zlib
 lazy refcounts: false
 refcount bits: 16
 corrupt: false
 extended l2: false
Child node '/file':
 filename: base.qcow
 protocol type: file
 file length: 194 KiB (198656 bytes)
 disk size: 196 KiB

51 / 81

External disk snapshots can form a tree hierarchy

52 / 81

Temporary external disk snapshots

• QEMU supports temporary disk snapshots via the -snapshot argument

• No need to explicitly create a separate snapshot file to run QEMU on

• Changes made to the VM while running are transparently written to a
temporary file deleted when QEMU exits

• No changes are saved to the original disk image file

• Example:

qemu-system-x86_64 -smp cpus=2 -m 4G -hda disk.qcow -snapshot

53 / 81

Merging disk snapshots

Merging external disk snapshots (1/2)

• External disk snapshots in a chain can be merged together

‣ offline, when the VM is not running, using qemu-img

‣ online, when the VM is running, using QEMU Machine Protocol
(QMP) commands

55 / 81

https://qemu.readthedocs.io/en/master/interop/qemu-qmp-ref.html
https://qemu.readthedocs.io/en/master/interop/qemu-qmp-ref.html

Merging external disk snapshots (2/2)

• Two types of merges:

‣ commit: merge a chain of snapshots into a backing image:
– merge children images into a parent image
– snapshot files are not removed by QEMU
– intermediate snapshots become invalid: no more snapshots must

be created based on them
– advisable to delete intermediate snapshots!

‣ stream: merge a chain of backing images into a snapshot
– merge parent images into a child image
– parent images not needed by child image anymore

56 / 81

Merging: commit operations

Example of chain ([A] = base image, [D] = active snapshot):

[A] <-- [B] <-- [C] <-- [D]

• Case 1, merge [B] into [A]:

[A] <-- [C] <-- [D]

• Case 2, merge [B] and [C] into [A]:

[A] <-- [D]

• Case 3, merge [B], [C] and [D] into [A]:

[A]

57 / 81

Merging: commit operations

Example of chain ([A] = base image, [D] = active snapshot):

[A] <-- [B] <-- [C] <-- [D]

• Case 4, merge [C] into [B]:

[A] <-- [B] <-- [D]

• Case 5, merge [C] and [D] into [B]:

[A] <-- [B]

58 / 81

Merging: stream operations

Example of chain ([A] = base image, [D] = active snapshot):

[A] <-- [B] <-- [C] <-- [D]

• Case 1, merge everything into [D]:

[D]

• Case 2, merge [B] and [C] into [D]:

[A] <-- [D]

• Case 3, merge [B] into [C]:

[A] <-- [C] <-- [D]

59 / 81

Commit operations with qemu-img

• The combined state up to a given snapshot can be merged back into a
previous backing image in the chain

• qemu-img commit can be used to perform a merge “commit”
• Example, where [A] is the base image:

[A] <-- [B] <-- [C] <-- [D]

‣ merge combined states from [B] to [D] into image [B]:

qemu-img commit -f qcow2 -b B.qcow D.qcow

‣ advisable to delete [C] and [D] as they are not valid anymore!

60 / 81

VM snapshots

QEMU VM snapshots

• Unlike disk snapshots, VM snapshots save the full state of the VM

• VM snapshots save 3 states: disk, RAM, devices

• Snapshots are stored as internal snapshots
‣ all stored in the same qcow file

⚠ Given the full machine state is saved, the VM’s hardware cannot
change!

62 / 81

VM snapshots

• VM snapshots are managed using the QEMU monitor1:

savevm <tag> creates (save) a VM snapshot

delvm <tag> deletes a VM snapshot

loadvm <tag> applies (restore) a VM snapshot

info snapshots lists all snapshots (disk and VM)

• A specific snapshot can be restored when starting QEMU:
‣ argument -loadvm <tag> starts the VM using the specified snapshot

1Cf. next section
63 / 81

QEMU monitor

QEMU monitor

The QEMU monitor is a console used to interact with QEMU at
runtime (during its execution) to:

• Control various aspects of the VM
• Inspect the VM (registers, devices, etc.)
• Inspect the running guest OS
• Change removable media and USB devices
• Take snapshots, screenshots, audio grabs
• Perform VM live migration
• etc.

65 / 81

Accessing the QEMU monitor

• From QEMU’s GUI: View → compatmonitor0 (or similar)

• By starting QEMU with the argument: -monitor stdio
‣ monitor accessed in the shell QEMU was started in

• By pressing [Ctrl-Alt-2]
‣ [Ctrl-Alt-1] switches back to the guest OS

• Through a telnet server embedded and started by QEMU
‣ start QEMU with: -monitor telnet::1234,server,nowait
‣ on the “client” side: telnet ip_qemu_server 1234

66 / 81

Useful QEMU commands and arguments

man qemu-system Exhaustive help on QEMU
-monitor stdio Redirect the monitor to the console
-machine accel=kvm Use KVM to provide hardware assisted virtualization
-smp cpus=<n> Set the number of CPUs to
-m <mem> Set the ammount or RAM to
-drive ... Define a new drive
-device ... Add a device driver

-nic ...
Shortcut for configuring both the guest NIC and the host
network backend

-spice ... Enable a Spice server
-vga ... Select the type of display card to emulate
-snapshot Run on a temporary disk snapshot

67 / 81

Virtual Desktop
Infrastructure (VDI)

Desktop virtualization

• Server virtualization is commonplace and offered everywhere
‣ manage virtual machines: CPU, RAM, storage, network, etc.
‣ administrator access: text mode (ssh), low end graphics (VNC)

• Desktop virtualization needs more:
‣ desktop integration (copy/paste, shared directory, dynamic display

resize, etc.)
‣ USB forwarding
‣ sound forwarding
‣ video stream support
‣ better graphics (3D, multihead, etc.)

69 / 81

Desktop virtualization with QEMU

• QEMU supports two remote graphical desktop technologies: VNC and
Spice

• Both technologies require:
‣ a server component (VNC or Spice), embedded and running in

QEMU
‣ a client software used by the user to interact with the VM’s desktop

70 / 81

Virtual Network Computing (VNC)

• VNC = Virtual Network Computing

• Very popular and available in most VMM, but offers fairly high latency

• Uses the Remote Frame Buffer (RFB) protocol to remotely control
another computer

• Transmits keyboard and mouse input from one computer to another,
relaying graphical-screen updates over the network

• RFB is very simple: transmit graphic primitives from server to client and
event messages from client to server

• Remote desktop solution for both, virtualized, and physical infrastructures
71 / 81

Simple Protocol for Independent Computing Environments

• SPICE = Simple Protocol for Independent Computing Environments1

• Goal: provide low latency and full-featured desktop virtualization

• Spice is less known than VNC, only available in QEMU, but offers
much lower latency and more features than VNC
‣ e.g. USB redirection over the network = ability to use USB devices

from the client

• Only available for virtualized infrastructures

1https://www.spice-space.org/
72 / 81

https://www.spice-space.org/

Spice overview

• Provide virtual desktop infrastructure through:
‣ Spice network protocol
‣ paravirtualized graphics card in QEMU
‣ Spice server embedded and running in QEMU
‣ spice-vdagentd service running in guest OS
‣ Spice client software (e.g. virt-viewer)

• VM accessed remotely via a dedicated port on the host (on which the
QEMU Spice server runs)
‣ one port per VM

73 / 81

Spice features

• Much lower latency than VNC
• More bandwidth efficient than VNC at equivalent latency
• Multiple channels: main, display, cursor, inputs, record, playback
• Any combination of channels can be encrypted via TLS
• Access can be password protected
• Copy/paste host ↔ guest OS
• USB redirection over the network
• Files transfer from host to guest OS (drag and drop)
• Shared directory over the network
• Image compression
• OpenGL (3D graphics) acceleration

74 / 81

Spice architecture

75 / 81

Spice components

• Server: library used by the VMM to share the VM
‣ Typically: QEMU running a Spice server exposing paravirtualized

devices for Spice

• Client: responsible to send data and translate the data from the VM so
user can interact with it
‣ Examples: remote-viewer, spicy, etc.

• Guest: software running in the guest OS to make Spice fully functional
‣ Typically: paravirtualized graphics driver, Spice vdagent service

• Protocol: the Spice network protocol

76 / 81

Spice basic usage - server side (1/2)

Server side: QEMU

• Require -vga virtio (recommended) or -vga qxl graphics drivers
‣ virtio most robust driver, but uses slightly more bandwidth
‣ qxl: less bandwidth usage, but less stable (prone to crashes)

• Arguments to start a Spice server on port 8000 in the VM (without
authentication):

-device virtio-serial-pci

-spice port=8000,disable-ticketing=on

-device virtserialport,chardev=spicechannel0,name=com.redhat.spice.0

-chardev spicevmc,id=spicechannel0,name=vdagent

77 / 81

Spice basic usage - server side (2/2)

Server side: in guest OS

• Require Spice Guest Agent daemon running (spice-vdagentd)

• The Spice agent adds the following features:
‣ client mouse mode (no mouse lag)
‣ automatic adjustment of virtual monitor resolution
‣ copy and paste
‣ file transfers

• Usually already installed in most GNU Linux distributions

78 / 81

Spice basic usage - client side

Client side

• A specific Spice client software is required

• Most popular client is remote-viewer (part of virt-viewer project1)

• Example, to connect to a VM running on port 8000 of server at ip
10.9.52.118:

remote-viewer "spice://10.9.52.118?port=8000"

1https://gitlab.com/virt-viewer/virt-viewer
79 / 81

https://gitlab.com/virt-viewer/virt-viewer

Spice server: QEMU arguments explained

• -device virtio-serial-pci
‣ add a virtio serial device

• -spice port=8000,disable-ticketing=on
‣ create a Spice server listening on port 8000 for client connection without authentication

• -device virtserialport,chardev=spicechannel0,name=com.redhat.spice.0
‣ open a port for spice-vdagent in the virtio serial device
‣ the name spicechannel0 above must match the id= option below
‣ port name must be com.redhat.spice.0 because it’s the namespace spice-vdagent is

looking for in the guest OS

• -chardev spicevmc,id=spicechannel0,name=vdagent
‣ add a spicevmc device for the port above
‣ the name=vdagent option tells Spice what the channel is for

80 / 81

Resources

• QEMU documentation
https://qemu.readthedocs.io

• Live Block Device Operations
https://qemu.readthedocs.io/en/master/interop/live-block-operations.html

• QEMU shared folders with 9pfs
https://wiki.qemu.org/Documentation/9psetup

• Using QEMU Machine Protocol (QMP)
https://wiki.qemu.org/Documentation/QMP

• Introduction to VirtIO
https://blogs.oracle.com/linux/post/introduction-to-virtio

• VGA and other display devices in QEMU
https://www.kraxel.org/blog/2019/09/display-devices-in-qemu/

81 / 81

https://qemu.readthedocs.io
https://qemu.readthedocs.io/en/master/interop/live-block-operations.html
https://wiki.qemu.org/Documentation/9psetup
https://wiki.qemu.org/Documentation/QMP
https://blogs.oracle.com/linux/post/introduction-to-virtio
https://www.kraxel.org/blog/2019/09/display-devices-in-qemu/

	Introduction to QEMU
	What is QEMU?
	Why QEMU?
	A bit of history
	Where is QEMU being used?
	What can QEMU do?
	QEMU principle
	QEMU usage
	QEMU nested virtualization

	QEMU with KVM
	Can a host run KVM? (1/2)
	Can a host run KVM? (1/2)
	Accessing KVM

	Devices in QEMU
	QEMU devices
	Device types (from QEMU point of view)
	Virtio framework
	Virtio vs emulated driver
	Virtio architecture
	Optimized devices for Linux guest

	Storage in QEMU
	Storage devices in hypervisors
	QEMU disk images
	Recommended disk image formats
	Inspecting/modifying VM disk image files (1/3)
	guestfish
	guestmount

	Inspecting/modifying VM disk image files (2/3)
	Inspecting/modifying VM disk image files (3/3)

	Sparse files
	Sparse files
	Handling sparse files
	Copying sparse files

	Interacting with guest OS
	Port forwarding
	Shared directories
	QEMU Guest Agent (QGA)
	QEMU ↔ OS guest communication via QGA
	QGA principle
	Using QEMU Guest Agent (1/2)
	Using QEMU Guest Agent (2/2)
	QEMU Guest Agent commands: examples

	Snapshots
	What is a snapshot?
	QEMU snapshot scenarios
	QEMU snapshots storage policy

	QEMU disk snapshots
	(1) Save/restore a VM' state - disk only (internal snapshot)
	(1) Save/restore a VM' state - disk only (external snapshot)
	(1) Save/restore a VM' state - disk only (external snapshot)
	(1) Save/restore a VM' state - disk only (external snapshot)
	Create an external disk snapshot - example
	Chain of external disk snapshots
	External disk snapshots can form a tree hierarchy
	Temporary external disk snapshots

	Merging disk snapshots
	Merging external disk snapshots (1/2)
	Merging external disk snapshots (2/2)
	Merging: commit operations
	Merging: commit operations
	Merging: stream operations
	Commit operations with qemu-img

	VM snapshots
	QEMU VM snapshots
	VM snapshots

	QEMU monitor
	QEMU monitor
	Accessing the QEMU monitor
	Useful QEMU commands and arguments

	Virtual Desktop Infrastructure (VDI)
	Desktop virtualization
	Desktop virtualization with QEMU
	Virtual Network Computing (VNC)
	Simple Protocol for Independent Computing Environments
	Spice overview
	Spice features
	Spice architecture
	Spice components
	Spice basic usage - server side (1/2)
	Spice basic usage - server side (2/2)
	Spice basic usage - client side
	Spice server: QEMU arguments explained
	Resources

