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Thank you note

Thanks to Prof. Ada Gavrilovska at Georgia Institute of Technology for
allowing me to use some of her “Introduction to Operating Systems”
course’s content
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What is Platform virtualization?

• Virtualization of a whole hardware
platform → allows concurrent execution
of multiple OS on the same physical
machine (host system)

• Virtual machine (VM), also called guest
domain = efficient, isolated duplicate
of the real physical machine

• A VM is supported by a virtualization
layer = virtual machine monitor
(VMM) or hypervisor

The OS running in the VM is
called the Guest OS
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Virtual Machine

The term “Virtual Machine” (VM)
was originally defined by Popek and
Goldberg in 1974:

“An efficient, isolated duplicate
of a real computer machine”
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Popek and Goldberg requirements for a VMM

In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1.
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In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1. Equivalence: provide an environment essentially identical to the original
machine
• software on the VMM executes nearly identically to how it would on the

real hardware
2. Efficiency: most machine instructions must be executed by the guest OS

without VMM intervention
• machine instructions run directly on the underlying hardware

3. Isolation: VMM is in complete control of the virtualized resources (hardware)
• provides isolation and security
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Quiz: VMM

Based on the historical definition of Popek & Goldberg, which of the following is a VMM?

We consider the following host: CPU Intel Core i7, VGA card, Intel Pro 1000 network card, IDE
PIIX disk controller

• Java Virtual Machine (JVM)
‣
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Modern VMM definition

• Popek and Goldberg’s efficiency and isolation requirements for a
VMM remain true to this day

• However, equivalence is not a requirement anymore

• Nowadays, VMMs might expose different hardware devices
(excluding the CPU architecture) than the physical hardware present on
the host and still be called a VMM
‣ most VMMs fall in this category
‣ in fact, for performance reasons, most VMMs expose virtual hardware

devices instead
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Platform virtualization

• Sometimes called “hardware virtualization”

• Type of virtualization that virtualizes a whole machine

• Three main components must be virtualized:
‣ CPU
‣ memory (MMU - Memory Managing Unit)
‣ devices (also called Input/Output or I/O): hard drive, disk

controllers, display, mouse, keyboard, etc.
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Privilege levels and traps



Privilege levels

For a traditional OS1 to provide security and control over user applications, a
CPU must provide at least 2 privilege levels:

• Privileged (or supervisor): the execution level used by the OS’ kernel
‣ the kernel has access to all instructions and fully controls the CPU

• Unprivileged (or user): the execution level used by user applications
‣ only a subset of instructions is allowed; executing a privileged

instruction raises a trap which can then be intercepted by the kernel,
which then decides what to do, e.g. segmentation fault in UNIX

1By opposition to other types of OSes, such as realtime OSes for embedded systems
for instance
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Traps

• A trap is raised when an instruction cannot be fulfilled by the CPU

• Typical trap examples:
‣ a unprivileged code attempts to execute a privileged instruction,

for instance:
– disable hardware interrupts
– modify the CPU flags register
– halt the CPU

‣ an unprivileged code attempts to read or write from a device (I/O)
‣ a code attempts to address (read or write) a memory address that

has no mapping
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Reminder: privilege levels, kernel and applications

Application execution when executed on top of an OS (kernel) without
any virtualization:

Without system calls, apps accessing hardware would trigger traps and be
likely terminated (killed) by kernel
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Platform virtualization:
CPU virtualization



CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

• Full virtualization using Trap-and-Emulate (historical)
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CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

• Full virtualization using Trap-and-Emulate (historical)
• Full virtualization using Binary Translation
• Hardware-assisted full virtualization
• Paravirtualization

Here, we present these techniques and their history, starting with the
first platform virtualization implementation with IBM System/360 CP-67
mainframes, then by VMware’s implementation for the PC architecture
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CPU virtualization: full virtualization using Trap-and-Emulate

IBM CP-67 added a new hypervisor CPU privilege level (more privileged
than the traditionnal privileged level) used by the VMM:

• Most guest OS instructions (non-
privileged) are executed directly
‣ they run at native speed → efficient

• Privileged instructions trigger a trap to
the VMM
‣ VMM then emulates the behavior

the guest OS is expecting from the
hardware Used on IBM mainframes since the 1970s
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Market changes

• From the 1970s until the mid-1990s, platform virtualization was almost
exclusively used on mainframes

• Platform virtualization through Trap-and-Emulate worked well on
mainframes because their CPUs were designed to support it

• Starting in the mid-1990s, as PC (x86 architecture) became more
powerful, platform virtualization became a technology of interest

• Attempts were made to implement Trap-and-Emulate for the PC

• However…
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x86 CPU privilege levels (protection)

• Intel 32-bit architecture released
in 1985 with the Intel 803861 CPU
features 4 protection levels2,
called rings:

‣ OS (kernel) runs in ring 0

‣ Applications run in ring 3

1AMD released the AM386 in 1991, featuring the same architecture; this lead to the
creation of the “IA-32” name for the same architecture, which is vendor-agnostic

2Still the case today with the latest Intel/AMD CPUs!
16 / 49



CPU virtualization: attempt at Trap-and-Emulate on x86

Basic idea:

• Guest OS applications
run in ring 3

• Guest OS kernel runs
in ring 1

• VMM runs in ring 0
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Issue with Trap-and-Emulate on x86

• The Trap-and-Emulate model did not work on x86!

• On 80386 and later Intel/AMD CPUs (Pentium, etc.):

‣ 17 privileged instructions do not trigger a trap when they should
– instead, they fail silently! (don’t pass control back to the VMM)
– VMM: doesn’t know → cannot emulate the expected behavior!
– guest OS: doesn’t know → believes operation was successful!

‣ Example: interrupt enable/disable bit in eflags register; pushf/popf
instructions that access it from ring 1 fail silently

18 / 49



Trap-and-Emulate on x86: what to do?

• The Trap-and-Emulate model does not work on x86
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Trap-and-Emulate on x86: what to do?

• The Trap-and-Emulate model does not work on x86

• Therefore, the x86 architecture cannot be virtualized!

• What to do?

• Mendel Rosenblum’s research group at Stanford University came-up
with a novel idea to implement CPU virtualization:

Dynamic Binary Transation
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CPU full virtualization: Dynamic Binary Translation

• Mendel Rosenblum’s idea was commercialized as VMware1 in 1998

• Basic idea: VMM modifies the guest OS’ kernel code at runtime to
avoid using the 17 “problem” instructions

• The guest OS is unaware it’s being modified!

• Goal: avoid modifying the guest OS kernel’ source code!
‣ required in order to work with any guest OS kernel (e.g. Windows)

1One of VMware’s five co-founders is Swiss computer scientist Edouard Bugnion
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CPU full virtualization: Dynamic Binary Translation

• Dynamically capture code blocks

• Inspect code blocks to be executed
for the 17 “problem” instructions

• When needed, translate to alternate
instructions sequence, to emulate
desired behavior and avoid traps

• Otherwise, which is most of the time
→ run at native speed

• Speed optimization: cache translated
blocks to amortize translation costs
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Dynamic Binary Translation: pros and cons

• Pros
‣ guest OS kernel’ source code does not need to be modified → can

run on proprietary kernels (e.g. Windows)

• Cons
‣ inefficient → low performance
‣ complex implementation

How to improve performance?
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CPU paravirtualization: concept

• Improve performance by avoiding the overhead/complexity required
to support unmodified guest OS’ kernel

• Modify the guest OS’ kernel so that it can request services from the
VMM

• Pioneered by the Xen hypervisor at the University of Cambridge (UK)
in 2003
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Reminder: OS kernel, drivers and user applications

• An OS is composed of:
‣ kernel
‣ libraries
‣ user applications

• Kernel runs in privileged mode (kernel-space)

• Libraries + applications run in non-privileged mode (user-space)

• Kernel composed of: kernel + drivers (to control devices)

• Kernel sources are not required to write drivers!
‣ anyone can write device drivers for proprietary OSes
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CPU paravirtualization

• Guest OS’ kernel source code is slightly
modified (only a few %)

• Guest OS knows it’s running on top of a
VMM

• For privilege operations, guest OS
requests services from the VMM
through hypercalls

• Hypercalls from guest OS to VMM ≅
system calls from user apps to kernel

25 / 49



Paravirt. vs Binary Translation performance comparison
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CPU paravirtualization: pros and cons

• Pros
‣ much better performance than Dynamic Binary Translation
‣ much simpler to implement than Dynamic Binary Translation

• Cons
‣ guest OS kernel’ source code must be modified → cannot run on

closed-source kernels (e.g. Windows)
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CPU: the need for platform virtualization

• Since 2005, new hardware instructions for virtualization are integrated
into Intel/AMD CPUs

• These instructions are called:
‣ Intel VT-x for Intel CPUs
‣ AMD-V Pacifica for AMD CPUs

• Goal: to solve the issue with the 17 “problem” instructions

Starting in 2005, the x86 architecture can finally be
virtualized similarly to IBM mainframes in 1970s!
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CPU full virtualization: hardware-assisted

• Intel VT-x and AMD-V
provide hardware-assisted1

virtualization instructions
‣ add new CPU modes:

root2/non-root
‣ VMM runs in root mode
‣ Guest OS runs in non-

root mode

1Also called “Accelerated Virtualization” and “Hardware Virtual Machine” (HVM)
2Completely unrelated to root user in Linux/UNIX!
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CPU hardware-assisted virtualization, root/non-root modes

• VMM runs in root mode:
‣ ring 0: VMM

• Guest OS runs in non-root mode:
‣ ring 3: user applications
‣ ring 0: kernel

• In non-root mode, certain
privileged operations trigger traps
(VMexits) → trigger switch to
root mode (VMM)
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CPU hardware-assisted virtualization: pros and cons

• Pros
‣ guest OS kernel’ source code does not need to be modified (as with

CPU paravirtualization)
‣ much more efficient than Binary Translation, thanks to dedicated

hardware instructions

• Cons
‣ only available if CPU implements the dedicated hardware instructions
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Platform virtualization:
device virtualization



Device virtualization techniques

Devices can be virtualized using 4 techniques:

1we won’t present it here
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Device virtualization: full virtualization using emulation

• VM presents a “real” device to the guest OS
• Guest OS must have drivers for the real device
• VMM intercepts all device accesses
• VMM emulates a real device that’s likely not physically

present on the host
• Pros

‣ VM decoupled from physical device
‣ guest OS can run on real hardware

(provided it has the required drivers)

‣ VM migration
‣ device sharing

• Cons
‣ emulating a real device can be complex
‣ low performance due to lots of VM exits
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Device virtualization: paravirtualization

• VM presents a virtual device to the guest OS
• Guest OS must have driver for the virtual device
• Driver much simpler than for a real device
• Driver uses the virtual device’s API to control it
‣ uses hypercalls + shared memory to communicate with VMM
‣ simple and highly efficient

• Pros

‣ VM decoupled from physical device
‣ no need to emulate a real device
‣ easy to implement & high performance

‣ VM migration
‣ device sharing

• Cons
‣ guest OS requires specific driver
‣ guest OS cannot run on real hardware
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Device virtualization: passthrough

• VMM gives guest OS exclusive direct access to
physical device

• Pros
‣ native (highest) performance

• Cons
‣ device cannot be shared (or very difficult)
‣ VM migration difficult
‣ host must have the exact device type expected

by the guest OS
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Platform virtualization nowadays

Nowadays, VMMs that implement platform virtualization use a
combination of virtualization types:

• Hardware-assisted full virtualization for CPU and devices

• Paravirtualization for devices
‣ typically for performance-critical devices, such as disk and network

• Full virtualization (emulation) for devices
‣ typically used for better compatibility: when guest OS lacks

paravirtualized drivers

37 / 49



Hypervisor models



Modern hypervisors

• All hypervisors are based on:
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Modern hypervisors

• All hypervisors are based on:

‣ hardware assisted virtualization for the CPU

‣ emulated real devices through full virtualization

‣ paravirtualized “virtual (non-real)” devices
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Hypervisor models

Historically, hypervisors fall into two models:
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Historically, hypervisors fall into two models:

(a) hypervisor that runs directly on the hardware
• minimalistic OS that has only one goal: to manage VMs
• much smaller complexity than a general OS
• historically called type-1 or baremetal hypervisors

(b) OS kernel modified to add a virtualization layer
• “transform” a general-purpose OS into a hypervisor
• historically called type-2 or hosted hypervisors

Nowadays, it’s not so clear cut, for instance, Linux/KVM is classified as
either type-2 or type-1, depending on the source
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KVM (“Kernel Virtual Machine”) + QEMU (a)

Linux kernel module that provides hardware-assisted virtualization

• Exposes a user-space virtualization
API

• Requires VT-x or AMD-V
• Linux kernel provides hardware

management + runs regular Linux
applications

• VMs support through QEMU which
uses the KVM API

• First released in 2006
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VirtualBox (a)

Similar model to KVM + QEMU

• Uses its own kernel module which
provides similar features to KVM
‣ however, since early 2024 it can

also use KVM

• Developed by Innotek in 2007
(acquired by Sun Microsystems in
2008, in turn acquired by Oracle in
2010)
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VMware Workstation (a)

Similar model to KVM + QEMU and VirtualBox

• Uses its own kernel module which
provides similar features to KVM

• First released in 1999
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VMware ESXi (b)

VMM manages all hardware resources and supports execution of VMs

• Device manufacturers provide
device drivers for the hypervisor

• Limited hardware support: ESXi
only available for dedicated
servers with compatible/supported
hardware

• First released in 2001
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Xen (b)

VMM manages all hardware resources and supports execution of VMs

• Create a privileged VM (dom0) that runs
Linux OS with full hardware privileges
‣ run all device drivers
‣ manage unprivileged VMs (domU)
‣ system configuration and management,

e.g. how VMM share resources across
VMs

‣ uses QEMU for emulation of physical
devices

First released in 2003
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Microsoft Hyper-V (b)

VMM manages all hardware resources and supports execution of VMs

• Parent partition runs Windows Server
OS with full hardware privileges
‣ direct access to hardware devices
‣ create/manage child partitions which

host VMs with guest OS
‣ system config and management

• Similar model1 to XEN
• First released in Windows Server 2008

1https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/
hyper-v-architecture
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Additionnal examples

• FreeBSD bhyve → similar model to KVM (a)
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• VMware Fusion → similar model to VirtualBox (a)

• Apple Hypervisor for OSX (hvf) → similar model to KVM (a)

• Citrix Hypervisor → similar model to Xen (b)
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What’s used out there?

• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU
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• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU

• Microsoft Azure → Hyper-V

• Google Cloud Platform → KVM + QEMU

• Most cloud providers (e.g. DigitalOcean) → KVM + QEMU

• Everything OpenStack → generally powered by KVM + QEMU

• VMware remains leader in solutions for business/private environments
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Resources

• Bringing Virtualization to the x86 Architecture with the Original VMware Workstation E. Bugnion, S.
Devine, M. Rosenblum, J. Sugerman, E. Wang; ACM Transactions on Computer Systems, 2012

• Virtual Machine Monitors from “Operating Systems: Three Easy Pieces” Remzi H. et Andrea C.
Arpaci-Dusseau; Arpaci-Dusseau Books

• “Hardware and Software Support for Virtualization”; E. Bugnion, J. Nieh, D. Tsafrir; Morgan &
Claypool Publishers, 2017

• “Virtual Machines: Versatile Platforms for Systems and Processes”; J. Smith, R. Nair; Morgan
Kaufmann, 2005

• Xen and the Art of Virtualization, P. Barham et al., ACM SIGOPS Operating Systems Review,
Volume 37, Issue 5, 2003

• Virtualization in Xen 3.0, Rami Rosen, Linux Journal, 2006

• Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware White Paper,
2007
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