
Platform Virtualization

Florent Glück - florent.gluck@hesge.ch

February 17, 2025

ISC - HEPIA



Thank you note

Thanks to Prof. Ada Gavrilovska at Georgia Institute of Technology for
allowing me to use some of her “Introduction to Operating Systems”
course’s content

1 / 41



What is Platform virtualization?

• Virtualization of a whole hardware
platform → allows concurrent execution
of multiple OS on the same physical
machine (host system)

• Virtual machine (VM), also called guest
domain = efficient, isolated duplicate
of the real physical machine

• A VM is supported by a virtualization
layer = virtual machine monitor
(VMM) or hypervisor

The OS running in the VM is
called the Guest OS

2 / 41



Virtual Machine

The term “Virtual Machine” (VM)
was originally defined by Popek and
Goldberg in 1974:

“An efficient, isolated duplicate
of a real computer machine”

3 / 41



Popek and Goldberg requirements for a VMM

In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1.

4 / 41



Popek and Goldberg requirements for a VMM

In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1. Equivalence: provide an environment essentially identical to the original
machine
• software on the VMM executes nearly identically to how it would on the

real hardware
2.

4 / 41



Popek and Goldberg requirements for a VMM

In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1. Equivalence: provide an environment essentially identical to the original
machine
• software on the VMM executes nearly identically to how it would on the

real hardware
2. Efficiency: most machine instructions must be executed by the guest OS

without VMM intervention
• machine instructions run directly on the underlying hardware

3.

4 / 41



Popek and Goldberg requirements for a VMM

In 1974, Popek and Goldberg provide three major historical requirements for a
VMM:

1. Equivalence: provide an environment essentially identical to the original
machine
• software on the VMM executes nearly identically to how it would on the

real hardware
2. Efficiency: most machine instructions must be executed by the guest OS

without VMM intervention
• machine instructions run directly on the underlying hardware

3. Isolation: VMM is in complete control of the virtualized resources (hardware)
• provides isolation and security

4 / 41



Quiz: VMM

Based on the historical definition of Popek & Goldberg, which of the following is a VMM?

We consider the following host: CPU Intel Core i7, VGA card, Intel Pro 1000 network card, IDE
PIIX disk controller

• Java Virtual Machine (JVM)
‣

5 / 41



Quiz: VMM

Based on the historical definition of Popek & Goldberg, which of the following is a VMM?

We consider the following host: CPU Intel Core i7, VGA card, Intel Pro 1000 network card, IDE
PIIX disk controller

• Java Virtual Machine (JVM)
‣ no: equivalence, efficiency and isolation not satisfied

• QEMU running a Raspberry PI VM
‣

5 / 41



Quiz: VMM

Based on the historical definition of Popek & Goldberg, which of the following is a VMM?

We consider the following host: CPU Intel Core i7, VGA card, Intel Pro 1000 network card, IDE
PIIX disk controller

• Java Virtual Machine (JVM)
‣ no: equivalence, efficiency and isolation not satisfied

• QEMU running a Raspberry PI VM
‣ no: equivalence and efficiency not satisfied

• Oracle VirtualBox running a VM with: Intel Core i7, VGA card, Intel Pro 1000 network card,
IDE PIIX disk controller
‣

5 / 41



Quiz: VMM

Based on the historical definition of Popek & Goldberg, which of the following is a VMM?

We consider the following host: CPU Intel Core i7, VGA card, Intel Pro 1000 network card, IDE
PIIX disk controller

• Java Virtual Machine (JVM)
‣ no: equivalence, efficiency and isolation not satisfied

• QEMU running a Raspberry PI VM
‣ no: equivalence and efficiency not satisfied

• Oracle VirtualBox running a VM with: Intel Core i7, VGA card, Intel Pro 1000 network card,
IDE PIIX disk controller
‣ yes

• Oracle VirtualBox running a VM with: Intel Core i7, VGA card, Realtek RTL8111E network
card, SCSI Adaptec disk controller
‣

5 / 41



Quiz: VMM

Based on the historical definition of Popek & Goldberg, which of the following is a VMM?

We consider the following host: CPU Intel Core i7, VGA card, Intel Pro 1000 network card, IDE
PIIX disk controller

• Java Virtual Machine (JVM)
‣ no: equivalence, efficiency and isolation not satisfied

• QEMU running a Raspberry PI VM
‣ no: equivalence and efficiency not satisfied

• Oracle VirtualBox running a VM with: Intel Core i7, VGA card, Intel Pro 1000 network card,
IDE PIIX disk controller
‣ yes

• Oracle VirtualBox running a VM with: Intel Core i7, VGA card, Realtek RTL8111E network
card, SCSI Adaptec disk controller
‣ no: equivalence not satisfied

5 / 41



Modern VMM definition

• Popek and Goldberg’s efficiency and isolation requirements for a
VMM remain true to this day

• However, equivalence is not a requirement anymore

• Nowadays, VMMs might expose different hardware devices
(excluding the CPU architecture) than the physical hardware present on
the host and still be called a VMM
‣ most VMMs fall in this category
‣ in fact, for performance reasons, most VMMs expose virtual hardware

devices instead

6 / 41



Platform virtualization

• Sometimes called “hardware virtualization”

• Type of virtualization that virtualizes a whole machine

• Three main components must be virtualized:
‣ CPU
‣ memory (MMU - Memory Managing Unit)
‣ devices (also called Input/Output or I/O): hard drive, disk

controllers, display, mouse, keyboard, etc.

7 / 41



Platform virtualization:
CPU virtualization



CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

• Full virtualization using Trap-and-Emulate (historical)

9 / 41



CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

• Full virtualization using Trap-and-Emulate (historical)
• Full virtualization using Binary Translation

9 / 41



CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

• Full virtualization using Trap-and-Emulate (historical)
• Full virtualization using Binary Translation
• Hardware-assisted full virtualization

9 / 41



CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

• Full virtualization using Trap-and-Emulate (historical)
• Full virtualization using Binary Translation
• Hardware-assisted full virtualization
• Paravirtualization

9 / 41



CPU virtualization techniques

The CPU can be virtualized using 4 different techniques:

• Full virtualization using Trap-and-Emulate (historical)
• Full virtualization using Binary Translation
• Hardware-assisted full virtualization
• Paravirtualization

Here, we present these techniques and their history, following VMWare
steps

9 / 41



Background: hardware protection levels on x86 CPU

• Commodity hardware has more
than two protection levels

• For example, the original Intel 32-
bit architecture (IA-32) has four
protection levels, called rings

• OS (kernel) runs in ring 0

• Applications runs in ring 3

10 / 41



Reminder: execution without virtualization

Application execution when executed on top of an OS (x86) without any
virtualization:

11 / 41



OS: kernel, drivers and user applications

• OS composed of:
‣ kernel
‣ libraries
‣ user applications

• Kernel runs in privileged mode (kernel-space)

• Libraries + applications run in non-privileged mode (user-space)

• Kernel composed of: kernel + drivers (to control devices)

• Kernel sources are not required to write drivers!
‣ anyone can write device drivers for proprietary OSes

12 / 41



CPU virtualization: full virtualization using Trap-and-Emulate

Guest OS instructions are executed directly by the hardware:

• VMM does not interfere with every instruction/
memory access issued by guest OS or applications

• For non-privileged operations → runs at hardware
speed = efficient

• For privileged operations: trap to VMM

• If illegal operation: terminate VM

• If legal operation: emulate the behavior the guest
OS was expecting from the hardware

Used historically on
mainframes (and not PCs!)

13 / 41



Issue with Trap-and-Emulate

• Trap-and-Emulate worked well on mainframes because their CPUs were
designed to support virtualization

• In the 90s, when the need to apply virtualization to x86 architecture arose →
Trap-and-Emulate model did NOT work!

• x86 pre-2005:
‣ 17 privileged instructions do not trap → fail silently! (doesn’t pass control

back to VMM)
‣ e.g. interrupt enable/disable bit in privilege register; pushf/popf instructions

that access it from ring1 fail silently
– VMM doesn’t know, so doesn’t try to change settings
– guest OS doesn’t know, so assume change was successful!

14 / 41



CPU full virtualization: Binary Translation

• Main idea: VMM modifies the guest OS at runtime to never use those
17 instructions

• The guest OS is unaware it’s being modified!

• Pioneered by Mendel Rosenblum’s group at Stanford, commercialized
as VMware1 in 1998

• Goal: to not modify the guest OS’ source code!

1One of VMware’s five co-founders is Swiss computer scientist Edouard Bugnion
15 / 41

https://en.wikipedia.org/wiki/Edouard_Bugnion


CPU full virtualization: Binary Translation

• Dynamically capture code blocks

• Inspect code blocks to be executed
for the 17 “problem” instructions

• If needed, translate to alternate
instructions sequence (to emulate
desired behavior and avoid traps)

• Otherwise (which is most of the time)
→ run at full hardware speed

• Cache translated blocks to amortize
translation costs

16 / 41



Binary Translation: pros and cons

• Pros
‣ guest OS kernel’ source code does not need to be modified
‣ guest OS can run on real hardware

• Cons
‣ inefficient → low performance
‣ complex implementation

17 / 41



CPU paravirtualization1

Goal: better performance by avoiding overhead/complexity required to
support unmodified guest OS:

• guest OS’ source code is slightly modified
(few %)

• guest OS knows it’s running on top of a
VMM

• for privilege operations, guest OS makes
explicit calls to VMM through hypercalls

• hypercalls from guest OS to VMM ≅
system calls from user application to OS

18 / 41



Paravirt. vs Binary Translation performance comparison

19 / 41



CPU paravirtualization: pros and cons

• Pros
‣ much better performance than Binary Translation
‣ much simpler to implement than Binary Translation

• Cons
‣ guest OS kernel’ source code must be modified
‣ guest OS cannot run on real hardware

20 / 41



CPU full virtualization: hardware-assisted

• Also called “Accelerated Virtualization”
and “Hardware Virtual Machine” (HVM)

• Exists since the release of Intel VT-x &
AMD-V Pacifica in 2005:
‣ solves issue with the 17 “problem”

instructions
‣ adds new modes: root1/non-root
‣ VMM runs in root mode
‣ Guest OS runs in non-root mode

1Completely unrelated to root user in Linux/UNIX!
21 / 41



CPU hardware-assisted virtualization, root/non-root modes

• VMM runs in root mode:
‣ ring 0: VMM

• Guest OS runs in non-root mode:
‣ ring 3: user applications
‣ ring 0: kernel

• In non-root mode, certain
privileged operations cause traps
(VMexits) → trigger switch to
root mode (VMM)

22 / 41



CPU hardware-assisted virtualization: pros and cons

• Pros
‣ guest OS kernel’ source code does not need to be modified
‣ guest OS can run on real hardware
‣ much more efficient than Binary Translation, thanks to dedicated

hardware instructions

• Cons
‣ only available if CPU implements the dedicated hardware instructions

23 / 41



Platform virtualization:
device virtualization



Device virtualization techniques

Devices can be virtualized using 4 techniques:

1we won’t present it here
25 / 41



Device virtualization techniques

Devices can be virtualized using 4 techniques:

• Full virtualization using emulation

1we won’t present it here
25 / 41



Device virtualization techniques

Devices can be virtualized using 4 techniques:

• Full virtualization using emulation
• Hardware-assisted full virtualization (using VT-d hardware)1

1we won’t present it here
25 / 41



Device virtualization techniques

Devices can be virtualized using 4 techniques:

• Full virtualization using emulation
• Hardware-assisted full virtualization (using VT-d hardware)1

• Paravirtualization

1we won’t present it here
25 / 41



Device virtualization techniques

Devices can be virtualized using 4 techniques:

• Full virtualization using emulation
• Hardware-assisted full virtualization (using VT-d hardware)1

• Paravirtualization
• Passthrough

1we won’t present it here
25 / 41



Device virtualization: full virtualization using emulation

• VM presents a “real” device to the guest OS
• Guest OS must have drivers for the real device
• VMM intercepts all device accesses
• VMM emulates a real device that’s likely not physically

present on the host
• Pros

‣ VM decoupled from physical device
‣ guest OS can run on real hardware

(provided it has the required drivers)

‣ VM migration
‣ device sharing

• Cons
‣ emulating a real device can be complex
‣ low performance due to lots of VM exits

26 / 41



Device virtualization: paravirtualization

• VM presents a virtual device to the guest OS
• Guest OS must have driver for the virtual device
• Driver much simpler than for a real device
• Driver uses the virtual device’s API to control it
‣ uses hypercalls + shared memory to communicate with VMM
‣ simple and highly efficient

• Pros

‣ VM decoupled from physical device
‣ no need to emulate a real device
‣ easy to implement & high performance

‣ VM migration
‣ device sharing

• Cons
‣ guest OS requires specific driver
‣ guest OS cannot run on real hardware

27 / 41



Device virtualization: passthrough

• VMM gives guest OS exclusive direct access to
physical device

• Pros
‣ native (highest) performance

• Cons
‣ device cannot be shared (or very difficult)
‣ VM migration difficult
‣ host must have the exact device type expected

by the guest OS

28 / 41



Platform virtualization nowadays

Nowadays, VMMs that implement platform virtualization use a
combination of virtualization types:

• Hardware-assisted full virtualization for CPU and devices

• Paravirtualization for devices
‣ typically for performance-critical devices, such as disk and network

• Full virtualization (emulation) for devices
‣ typically used for better compatibility: when guest OS lacks

paravirtualized drivers

29 / 41



Hypervisor models



Modern hypervisors

• All hypervisors are based on:

31 / 41



Modern hypervisors

• All hypervisors are based on:

‣ hardware assisted virtualization for the CPU

31 / 41



Modern hypervisors

• All hypervisors are based on:

‣ hardware assisted virtualization for the CPU

‣ emulated real devices through full virtualization

31 / 41



Modern hypervisors

• All hypervisors are based on:

‣ hardware assisted virtualization for the CPU

‣ emulated real devices through full virtualization

‣ paravirtualized “virtual (non-real)” devices

31 / 41



Hypervisor models

Historically, hypervisors fall into two models:

32 / 41



Hypervisor models

Historically, hypervisors fall into two models:

(a) hypervisor that runs directly on the hardware
• minimalistic OS that has only one goal: to manage VMs
• much smaller complexity than a general OS
• historically called type-1 or baremetal hypervisors

(b)

32 / 41



Hypervisor models

Historically, hypervisors fall into two models:

(a) hypervisor that runs directly on the hardware
• minimalistic OS that has only one goal: to manage VMs
• much smaller complexity than a general OS
• historically called type-1 or baremetal hypervisors

(b) OS kernel modified to add a virtualization layer
• “transform” a general-purpose OS into a hypervisor
• historically called type-2 or hosted hypervisors

Nowadays, it’s not so clear cut, for instance, Linux/KVM is classified as
either type-2 or type-1, depending on the source

32 / 41



KVM (“Kernel Virtual Machine”) + QEMU (a)

Linux kernel module that provides hardware-assisted virtualization

• Exposes a user-space virtualization
API

• Requires VT-x or AMD-V
• Linux kernel provides hardware

management + runs regular Linux
applications

• VMs support through QEMU which
uses the KVM API

• First released in 2006

33 / 41



VirtualBox (a)

Similar model to KVM + QEMU

• Uses its own kernel module which
provides similar features to KVM
‣ however, since early 2024 it can

also use KVM

• Developed by Innotek in 2007
(acquired by Sun Microsystems in
2008, in turn acquired by Oracle in
2010)

34 / 41



VMware Workstation (a)

Similar model to KVM + QEMU and VirtualBox

• Uses its own kernel module which
provides similar features to KVM

• First released in 1999

35 / 41



VMware ESXi (b)

VMM manages all hardware resources and supports execution of VMs

• Device manufacturers provide
device drivers for the hypervisor

• Limited hardware support: ESXi
only available for dedicated
servers with compatible/supported
hardware

• First released in 2001

36 / 41



Xen (b)

VMM manages all hardware resources and supports execution of VMs

• Create a privileged VM (dom0) that runs
Linux OS with full hardware privileges
‣ run all device drivers
‣ manage unprivileged VMs (domU)
‣ system configuration and management,

e.g. how VMM share resources across
VMs

‣ uses QEMU for emulation of physical
devices

First released in 2003

37 / 41



Microsoft Hyper-V (b)

VMM manages all hardware resources and supports execution of VMs

• Parent partition runs Windows Server
OS with full hardware privileges
‣ direct access to hardware devices
‣ create/manage child partitions which

host VMs with guest OS
‣ system config and management

• Similar model1 to XEN
• First released in Windows Server 2008

1https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/
hyper-v-architecture

38 / 41

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture


Additionnal examples

• FreeBSD bhyve → similar model to KVM (a)

39 / 41



Additionnal examples

• FreeBSD bhyve → similar model to KVM (a)

• VMware Fusion → similar model to VirtualBox (a)

39 / 41



Additionnal examples

• FreeBSD bhyve → similar model to KVM (a)

• VMware Fusion → similar model to VirtualBox (a)

• Apple Hypervisor for OSX (hvf) → similar model to KVM (a)

39 / 41



Additionnal examples

• FreeBSD bhyve → similar model to KVM (a)

• VMware Fusion → similar model to VirtualBox (a)

• Apple Hypervisor for OSX (hvf) → similar model to KVM (a)

• Citrix Hypervisor → similar model to Xen (b)

39 / 41



Additionnal examples

• FreeBSD bhyve → similar model to KVM (a)

• VMware Fusion → similar model to VirtualBox (a)

• Apple Hypervisor for OSX (hvf) → similar model to KVM (a)

• Citrix Hypervisor → similar model to Xen (b)

• VMware Player → similar model to VMware Fusion (a)

39 / 41



What’s used out there?

• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU

40 / 41



What’s used out there?

• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU

• Microsoft Azure → Hyper-V

40 / 41



What’s used out there?

• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU

• Microsoft Azure → Hyper-V

• Google Cloud Platform → KVM + QEMU

40 / 41



What’s used out there?

• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU

• Microsoft Azure → Hyper-V

• Google Cloud Platform → KVM + QEMU

• Most cloud providers (e.g. DigitalOcean) → KVM + QEMU

40 / 41



What’s used out there?

• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU

• Microsoft Azure → Hyper-V

• Google Cloud Platform → KVM + QEMU

• Most cloud providers (e.g. DigitalOcean) → KVM + QEMU

• Everything OpenStack → generally powered by KVM + QEMU

40 / 41



What’s used out there?

• Amazon AWS & EC2 → from Xen to Nitro which is a stripped-down
version of KVM + QEMU

• Microsoft Azure → Hyper-V

• Google Cloud Platform → KVM + QEMU

• Most cloud providers (e.g. DigitalOcean) → KVM + QEMU

• Everything OpenStack → generally powered by KVM + QEMU

• VMware remains leader in solutions for business/private environments

40 / 41



Resources

• Bringing Virtualization to the x86 Architecture with the Original VMware Workstation E. Bugnion, S.
Devine, M. Rosenblum, J. Sugerman, E. Wang; ACM Transactions on Computer Systems, 2012

• Virtual Machine Monitors from “Operating Systems: Three Easy Pieces” Remzi H. et Andrea C.
Arpaci-Dusseau; Arpaci-Dusseau Books

• “Hardware and Software Support for Virtualization”; E. Bugnion, J. Nieh, D. Tsafrir; Morgan &
Claypool Publishers, 2017

• “Virtual Machines: Versatile Platforms for Systems and Processes”; J. Smith, R. Nair; Morgan
Kaufmann, 2005

• Xen and the Art of Virtualization, P. Barham et al., ACM SIGOPS Operating Systems Review,
Volume 37, Issue 5, 2003

• Virtualization in Xen 3.0

• Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMWare White Paper,
2007

41 / 41

https://infoscience.epfl.ch/record/183742
https://pages.cs.wisc.edu/~remzi/OSTEP/vmm-intro.pdf
https://www.cl.cam.ac.uk/research/srg/netos/papers/2003-xensosp.pdf
https://www.linuxjournal.com/article/8909
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf

	Thank you note
	What is Platform virtualization?
	Virtual Machine
	Popek and Goldberg requirements for a VMM
	Quiz: VMM
	Modern VMM definition
	Platform virtualization
	Platform virtualization: CPU virtualization
	CPU virtualization techniques
	Background: hardware protection levels on x86 CPU
	Reminder: execution without virtualization
	OS: kernel, drivers and user applications
	CPU virtualization: full virtualization using Trap-and-Emulate
	Issue with Trap-and-Emulate
	CPU full virtualization: Binary Translation
	CPU full virtualization: Binary Translation
	Binary Translation: pros and cons
	CPU paravirtualizationPioneered by the Xen hypervisor at the University of Cambridge in 2003
	Paravirt. vs Binary Translation performance comparison
	CPU paravirtualization: pros and cons
	CPU full virtualization: hardware-assisted
	CPU hardware-assisted virtualization, root/non-root modes
	CPU hardware-assisted virtualization: pros and cons

	Platform virtualization: device virtualization
	Device virtualization techniques
	Device virtualization: full virtualization using emulation
	Device virtualization: paravirtualization
	Device virtualization: passthrough
	Platform virtualization nowadays

	Hypervisor models
	Modern hypervisors
	Hypervisor models
	KVM ("Kernel Virtual Machine") + QEMU (a)
	VirtualBox (a)
	VMware Workstation (a)
	VMware ESXi (b)
	Xen (b)
	Microsoft Hyper-V (b)
	Additionnal examples
	What's used out there?
	Resources


