
Docker Data Storage

Florent Glück - florent.gluck@hesge.ch

April 15, 2025

ISC - HEPIA

Docker images

• Docker images are root filesystems (rootfs) for containers

• Docker images:
‣ are immutable (read-only)
‣ should be minimal: only include an application and its dependencies
‣ do not need a kernel + modules: containers share the host kernel
‣ do not need initialization tools or scripts

• Images are portable and can be shared, stored and updated

1 / 25

Image inheritance

• New images can be created from existing images

• Images are usually created from images of well-known Linux
distributions (e.g. Ubuntu, Alpine, Debian, etc.)

• Starting from an existing image → easy and no significant overhead

• Images can also be created from scratch (from an archive)
‣ such images are called base images

2 / 25

Image composition

• Images are layered = made of different stacked layers that can be re-
used by other images and shared by containers

• Every image extends a parent image (its first layer)

• Layers are created from Dockerfile instructions: RUN, COPY, ADD

3 / 25

Image layers

A layer is a collection of files and directories

• Each layer is immutable (read-only)

• Each layer represents a delta of the changes from the previous layer

• Each layer is associated and referenced by a hash generated from the
layer’s content
‣ allows dockerd to know whether a layer has already been downloaded

• When downloading an image → each missing or non-up-to-date layer is
downloaded separately

4 / 25

Images, layers and containers (1/3)

When a container is created, a new writable layer is added on top of
the image

• This top layer is:
‣ called the container layer
‣ initially empty

• All changes made in a running container (write, modify, delete files,
etc.) are written to the writable layer

5 / 25

Images, layers and containers (2/3)

6 / 25

Images, layers and containers (3/3)
• Each container has its own writable container layer where changes are stored
• Multiple containers running the same image share the same read-only

underlying layers

7 / 25

Image vs container

What is the major difference between a container and an image?

• The top writable layer!

Additionally:

• All file modifications (additions, deletions, modifications) of a container
are only stored in the writable layer

• When a container is deleted → only its writable layer is deleted
‣ but the underlying immutable image (layers) remains!

8 / 25

Inspecting a container’s layers (1/2)

• Layers composing a container’s rootfs can be determined with:

docker inspect <container>

• Inspect the "Data" field under the "GraphDriver" node:

‣ LowerDir defines the immutable image layers (also called “lower
directories”)

‣ UpperDir defines the container writable layer (also called “upper
directory”)

‣ MergedDir defines the unified view of all layers, i.e. the container’s
rootfs (also called “merged directory”)

9 / 25

Inspecting a container’s layers (2/2)

Example, inspecting layers of container nginx:1.27:

docker inspect --format "{{json .GraphDriver.Data}}" nginx:1.27 | aeson-pretty

"LowerDir":
"/var/lib/docker/overlay2/5d8248138b1d493c0abedc31c05dd6df4f7e5bedcd8f83ab66f493b9f7ee7fe1/diff:
 /var/lib/docker/overlay2/1dc5c7e86993317073aa97b3696162c0fd5f51a13e0fe1aa0df30844e6d7a04f/diff:
 /var/lib/docker/overlay2/1ba1551810e5c914317b7f94eb170bd9462c2c2f41457b165341fdbfc6935dcc/diff:
 /var/lib/docker/overlay2/1cd81882657893b678faa3dbd0945fb3e694a95a88e3368a4f7387f3b47d65ea/diff:
 /var/lib/docker/overlay2/5d2bc99960ac393db06c988866803e2ba4217294d1f065c6d084f18720a8e5d9/diff:
 /var/lib/docker/overlay2/ccc1998b60ebc3ec952dddb4e76b2542964724d1d46c37635770e468f83bb51a/diff",

"UpperDir":
"/var/lib/docker/overlay2/a5f552406943edb1b7a456a10aec1155c7437e4e86a0f13b73b9fb6cb3f701ed/diff",

"MergedDir":
"/var/lib/docker/overlay2/a5f552406943edb1b7a456a10aec1155c7437e4e86a0f13b73b9fb6cb3f701ed/merged",

"WorkDir":
"/var/lib/docker/overlay2/a5f552406943edb1b7a456a10aec1155c7437e4e86a0f13b73b9fb6cb3f701ed/work"

10 / 25

Docker storage drivers

• Docker uses a storage driver to present a rootfs composed of
immutable image layers + a writable layer

• The default storage driver is overlay2

• Overlay2 uses Linux kernel’s overlay filesystem

• Layers contents are stored in dockerd daemon local storage directory
in /var/lib/docker/overlay2/

11 / 25

Overlay filesystem

• Merges multiple lower file tree layers with a single upper file tree,
then presents a unified view of these file trees in an overlay file tree

• Behavior when the same file/directory name exists in multiple trees:
‣ the one in the highest layer is exposed in the overlay layer

• The lower layers are accessed in read-only

• The upper layer is accessed in read-write

• The overlay is accessed in read-write as a mounted filesystem

12 / 25

Overlay filesystem: behavior example

13 / 25

Overlay filesystem: usage

mount -t overlay LABEL
 -o lowerdir=LOW_DIRS,upperdir=UPPER_DIR,workdir=WORK_DIR MERGED_DIR

LABEL arbitrary label to name the filesystem (visible in mount)

LOW_DIRS list of lower directories, separated by :

UPPER_DIR upper directory

WORK_DIR
working directory; required by kernel; must be empty and on the
same filesystem as UPPER_DIR

MERGED_DIR merged or overlay directory

14 / 25

Overlay filesystem: mount example

Example of an overlay filesystem with 3 lower dirs (low1, low2, low3), an upper
dir in /upper and presenting the overlay dir in /merged:

mount -t overlay some_label -o lowerdir=/low3:/low2:/low1,upperdir=/
upper,workdir=/work /merged

• In this example, directories are ordered as follow:

/upper # highest
/low3
/low2
/low1 # lowest

In a container, merged would be the container’s rootfs (from the user’s point of
view), upper the writable layer, and low1, low2, low3 the image layers

15 / 25

Committing changes

• docker commit commits the current filesystem state of a container into
an image file
‣ current state of a container = immutable layers + top writable layer
‣ useful when modifying a container by hand and wanting to make

these changes permanent
‣ better to use dockerfiles, but commit is useful for testing and

preparing

• docker diff useful to display filesystem changes between a container
and its image (similar to git diff)

16 / 25

Writable layer & performance

• Issue with overlay filesystem: reading and writing in container’s
writable layer is slower than on native filesystem

• Ideally, very little data should be written to a container’s writable layer

• Use Docker volumes1 for write-heavy workloads instead of the
container’s writable layer

• Volumes write directly to the host filesystem → better performances
than writing to the writable layer!

1More on volumes in the next slides
17 / 25

Data sharing

• Files created inside a container are stored on a writable container layer:
‣ data not persistent when container is deleted
‣ can be difficult to get the data out of the container

• How to share data between host and container?

• How to share data between multiple containers?

• Two possibilities:
1. bind mount
2. volume mount

18 / 25

(1) Bind mount

• Container can read-write files outside the container’s writable layer

• A directory on the server (where dockerd runs) is mounted into a container

• The file or directory is referenced by its full absolute path on the server

• Efficient, but rely on the host machine’s filesystem having a specific directory
structure available (mount point)

• Only works if client and server run on the same host!

• Example:

mkdir shared_mount
docker run --mount type=bind,src=$(pwd)/shared_mount,dst=/shared alpine:3.21

19 / 25

(2) Volume mount

• Container can read-write files outside the container’s writable layer

• A volume (possibly remote) is mounted into a container

• The volume is referenced by its name on the server machine

• Volumes are fully managed by Docker

• Client and server can be on different hosts!

• Example (more info with docker help volume):

docker volume create my_vol
docker run --mount type=volume,src=my_vol,dst=/shared alpine:3.21

20 / 25

Volumes: tricky behavior

• Mounting a non-existing volume automatically and implicitly creates it!

• Mounting an empty volume in a non-empty directory in the container
copies the directory’s files into the volume!

21 / 25

Volumes vs bind mounts

Benefits of volumes over bind mounts

• Volumes manageable via Docker CLI or Docker API

• Work on both Linux and Windows containers

• Can be stored on remote hosts

• Support encrypted contents, etc.

22 / 25

Volumes vs writing to the container writable layer

Volumes are often a better choice than persisting data in a container’s
writable layer:

• Contents exist outside the container’s lifecycle!
‣ contents remain when container is deleted

• Better read-write performance

• Does not increase the container’s size

23 / 25

Transfering data to/from a volume

• How to copy data from:
‣ the client’s filesystem to a volume (on the server)?
‣ a volume to the client filesystem?

• Copy content of the current directory on the client to the volume
mounted in /shared in the container:

docker cp . my_container:/shared/

• Copy volume’s content (mounted in /shared in the container) to the
current directory on the client:

docker cp my_container:/shared/ .

24 / 25

Resources

• Docker storage documentation
https://docs.docker.com/storage/

• Docker storage drivers documentation
https://docs.docker.com/storage/storagedriver/

• The Overlay Filesystem
https://windsock.io/the-overlay-filesystem/

• Julia Evans on containers & overlayfs
https://jvns.ca/blog/2019/11/18/how-containers-work--overlayfs/

• OverlayFS Linux kernel documentation
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

25 / 25

https://docs.docker.com/storage/
https://docs.docker.com/storage/storagedriver/
https://windsock.io/the-overlay-filesystem/
https://jvns.ca/blog/2019/11/18/how-containers-work--overlayfs/
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

	Docker images
	Image inheritance
	Image composition
	Image layers
	Images, layers and containers (1/3)
	Images, layers and containers (2/3)
	Images, layers and containers (3/3)
	Image vs container
	Inspecting a container's layers (1/2)
	Inspecting a container's layers (2/2)
	Docker storage drivers
	Overlay filesystem
	Overlay filesystem: behavior example
	Overlay filesystem: usage
	Overlay filesystem: mount example
	Committing changes
	Writable layer & performance
	Data sharing
	(1) Bind mount
	(2) Volume mount
	Volumes: tricky behavior
	Volumes vs bind mounts
	Volumes vs writing to the container writable layer
	Transfering data to/from a volume
	Resources

