Docker Data Storage

Florent Gliick - florent.gluck@hesge.ch

April 15, 2025
ISC - HEPIA

e Docker images are root filesystems (rootfs) for containers

e Docker images:
> are immutable (read-only)
> should be minimal: only include an application and its dependencies
> do not need a kernel + modules: containers share the host kernel

> do not need initialization tools or scripts

e Images are portable and can be shared, stored and updated

1/ 25

Image inheritance

e New images can be created from existing images

e Images are usually created from images of well-known Linux
distributions (e.g. Ubuntu, Alpine, Debian, etc.)

e Starting from an existing image — easy and no significant overhead

e Images can also be created from scratch (from an archive)
> such images are called base images

2 / 25

Image composition

e Images are layered = made of different stacked layers that can be re-

used by other images and shared by containers

e Every image extends a parent image (its first layer)

e Layers are created from Dockerfile instructions: RUN, COPY, ADD

ubuntu:22.04
image

q

’

91e54dfb1179 0By,
d74508fb6632 1.7 KB
c22013c84726 194.5 KB 4
d3a1f33e8aba 168.1 MB 4

4 layers

3 /25

Image layers

A layer is a collection of files and directories
e Each layer is immutable (read-only)
e Each layer represents a delta of the changes from the previous layer

e Each layer is associated and referenced by a hash generated from the
layer’s content
> allows dockerd to know whether a layer has already been downloaded

e When downloading an image — each missing or non-up-to-date layer is

downloaded separately

4 /25

Images, layers and containers (1/3)

When a container is created, a new writable layer is added on top of
the image

e This top layer is:
> called the container layer
> initially empty

e All changes made in a running container (write, modify, delete files,
etc.) are written to the writable layer

5 / 25

Images, layers and containers (2/3)

ubuntu:22.04

image (4 layers)

> container

91e54dfb1179
d74508fb6632
c22013c84726 194.5 KB
d3alf33e8aba 168.1 MB

6 / 25

Images, layers and containers (3/3)

e Each container has its own writable container layer where changes are stored
e Multiple containers running the same image share the same read-only
underlying layers

[P e e e m e mmmeme 2009090 e 0 e e e e e e - - - -

]]]
| Container 1! ' Container 25 'Container 3; |Container 4!
)) |
i writable layer | i writable layer | i writable layer | i writable layer |
------ KL"“‘K-I ..__7______l ‘7"'——_I
4
91e54dfb1179 0B
d74508fb6632 1.7 KB
ubuntu:22.04<
image (4 layers)
c22013c84726 194.5 KB
d3alf33e8aba 168.1 MB

7/ 25

Image vs container

What is the major difference between a container and an image”?
e The top writable layer!

Additionally:

e All file modifications (additions, deletions, modifications) of a container
are only stored in the writable layer

e When a container is deleted — only its writable layer is deleted

> but the underlying immutable image (layers) remains!

8 / 25

Inspecting a container’s layers (1/2)

e lLayers composing a container’s rootfs can be determined with:

docker inspect <container>

e Inspect the "Data" field under the "GraphDriver" node:

> LowerDir defines the immutable image layers (also called “lower

directories”)

> UpperDir defines the container writable layer (also called “upper

directory”)

> MergedDir defines the unified view of all layers, i.e. the container’s

rootfs (also called “merged directory”)

9 / 25

Inspecting a container’s layers (2/2)

Example, inspecting layers of container nginx:1.27:

docker inspect --format "{{json .GraphDriver.Data}}" nginx:1.27 | aeson-pretty

"LowerDir":

"/var/lib/docker/overlay2/5d8248138b1d493c0abedc31c05dd6df4f7e5bedcd8f83ab66f493b9f7ee7fel/diff:
/var/lib/docker/overlay2/1dc5c7e86993317073aa97b3696162c0fd5f51al3e0felaa0df30844e6d7a04f/diff:
/var/lib/docker/overlay2/1bal551810e5c914317b7194eb170bd9462c2c2f41457b165341fdbfc6935dcc/diff:
/var/lib/docker/overlay2/1cd81882657893b678faa3dbd0945fb3e694a95a88e3368a4f7387f3b47d65ea/diff:
/var/lib/docker/overlay2/5d2bc99960ac393db06c988866803e2bad4217294d1f065c6d084118720a8e5d9/diff:
/var/lib/docker/overlay2/cccl1998b60ebc3ec952dddb4e76b2542964724d1d46c37635770e468f83bb51a/diff",

“"UpperDir":
"/var/lib/docker/overlay2/a5f552406943edblb7a456al0aecl1155¢c7437e4e86a0f13b73b9fb6cb3f701ed/diff",

"MergedDir":
"/var/lib/docker/overlay2/a5f552406943edblb7a456al0aecl1155c7437e4e86a0f13b73b9fb6cb3f701ed/merged",

"WorkDir":
"/var/lib/docker/overlay2/a5f552406943edblb7a456al0aecl1155¢c7437e4e86a0f13b73b9fb6cb3f701ed/work"

10 / 25

Docker storage drivers

e Docker uses a storage driver to present a rootfs composed of

immutable image layers + a writable layer
e The default storage driver is overlay2
e Overlay2 uses Linux kernel’'s overlay filesystem

e Layers contents are stored in dockerd daemon local storage directory
In /var/lib/docker/overlay2/

11 / 25

Overlay filesystem

e Merges multiple lower file tree layers with a single upper file tree,
then presents a unified view of these file trees in an overlay file tree

e Behavior when the same file/directory name exists in multiple trees:
> the one in the highest layer is exposed in the overlay layer

e The lower layers are accessed in read-only
e The upper layer is accessed in read-write

e The overlay is accessed in read-write as a mounted filesystem

12 / 25

Overlay filesystem:

overlay

(read-write)

upper

(read-write)

lower2
(read-only)

lowerl
(read-only)

behavior example

dir

dir

dir

zorg.txt pipo ‘main.c

A

zorg.txt

A

pipo

A

main.c

list.txt
A

list.txt

dog.jpg

dog.jpg

13 / 25

Overlay filesystem: usage

mount -t overlay LABEL
-0 lowerdir=LOW DIRS,upperdir=UPPER DIR,workdir=WORK DIR MERGED DIR

LABEL arbitrary label to name the filesystem (visible in mount)

LOW_DIRS list of lower directories, separated by :

UPPER DIR upper directory

working directory; required by kernel; must be empty and on the
WORK DIR _
same filesystem as UPPER DIR

MERGED DIR merged or overlay directory

14 / 25

Overlay filesystem: mount example

Example of an overlay filesystem with 3 lower dirs (lowl, low2, low3), an upper

dir in /upper and presenting the overlay dir in /merged:

mount -t overlay some label -o lowerdir=/low3:/low2:/lowl,upperdir=/
upper,workdir=/work /merged

e In this example, directories are ordered as follow:

/upper # highest
/low3
/low?2
/lowl # lowest

In a container, merged would be the container’'s rootfs (from the user’s point of
view), upper the writable layer, and lowl, low2, low3 the image layers
15 / 25

Committing changes

e docker commit commits the current filesystem state of a container into
an image file
> current state of a container = immutable layers 4+ top writable layer
> useful when modifying a container by hand and wanting to make
these changes permanent

> better to use dockerfiles, but commit is useful for testing and

preparing

e docker diff useful to display filesystem changes between a container
and its image (similar to git diff)

16 / 25

Writable layer & performance

e Issue with overlay filesystem: reading and writing in container’s

writable layer is slower than on native filesystem
e |deally, very little data should be written to a container’'s writable layer

e Use Docker volumes! for write-heavy workloads instead of the

container’s writable layer

e Volumes write directly to the host filesystem — better performances

than writing to the writable layer!

IMore on volumes in the next slides

17 / 25

e Files created inside a container are stored on a writable container layer:
> data not persistent when container is deleted

> can be difficult to get the data out of the container
e How to share data between host and container?
e How to share data between multiple containers?

e Two possibilities:
1. bind mount

2. volume mount

18 / 25

(1) Bind mount

e Container can read-write files outside the container’s writable layer
e A directory on the server (where dockerd runs) is mounted into a container
e The file or directory is referenced by its full absolute path on the server

e Efficient, but rely on the host machine’s filesystem having a specific directory
structure available (mount point)

e Only works if client and server run on the same host!

e Example:

mkdir shared mount
docker run --mount type=bind,src=$(pwd)/shared mount,dst=/shared alpine:3.21

19 / 25

(2) Volume mount

e Container can read-write files outside the container’s writable layer
e A volume (possibly remote) is mounted into a container

e The volume is referenced by its name on the server machine

e Volumes are fully managed by Docker

e Client and server can be on different hosts!

e Example (more info with docker help volume):

docker volume create my vol
docker run --mount type=volume,src=my vol,dst=/shared alpine:3.21

20 / 25

Volumes: tricky behavior

e Mounting a non-existing volume automatically and implicitly creates it!

e Mounting an empty volume in a non-empty directory in the container

copies the directory's files into the volume!

21 / 25

Volumes vs bind mounts

Benefits of volumes over bind mounts

e Volumes manageable via Docker CLI or Docker API
e Work on both Linux and Windows containers

e Can be stored on remote hosts

e Support encrypted contents, etc.

22 / 25

Volumes vs writing to the container writable layer

Volumes are often a better choice than persisting data in a container’s
writable layer:

e Contents exist outside the container’s lifecycle!

» contents remain when container is deleted
e Better read-write performance

e Does not increase the container’s size

23 / 25

Transfering data to/from a volume

e How to copy data from:
> the client’s filesystem to a volume (on the server)?

> a volume to the client filesystem?

e Copy content of the current directory on the client to the volume

mounted in /shared in the container:

docker cp . my container:/shared/

e Copy volume's content (mounted in /shared in the container) to the

current directory on the client:
docker cp my container:/shared/ .

24 / 25

Resources

e Docker storage documentation

https://docs.docker.com /storage/

e Docker storage drivers documentation
https: //docs.docker.com /storage /storagedriver/

e The Overlay Filesystem
https: / /windsock.io /the-overlay-filesystem /

e Julia Evans on containers & overlayfs
https://jvns.ca/blog/2019/11 /18 /how-containers-work--overlayfs/

e OverlayFS Linux kernel documentation

https: //www.kernel.org /doc/Documentation /filesystems /overlayfs.txt

25 / 25

https://docs.docker.com/storage/
https://docs.docker.com/storage/storagedriver/
https://windsock.io/the-overlay-filesystem/
https://jvns.ca/blog/2019/11/18/how-containers-work--overlayfs/
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

	Docker images
	Image inheritance
	Image composition
	Image layers
	Images, layers and containers (1/3)
	Images, layers and containers (2/3)
	Images, layers and containers (3/3)
	Image vs container
	Inspecting a container's layers (1/2)
	Inspecting a container's layers (2/2)
	Docker storage drivers
	Overlay filesystem
	Overlay filesystem: behavior example
	Overlay filesystem: usage
	Overlay filesystem: mount example
	Committing changes
	Writable layer & performance
	Data sharing
	(1) Bind mount
	(2) Volume mount
	Volumes: tricky behavior
	Volumes vs bind mounts
	Volumes vs writing to the container writable layer
	Transfering data to/from a volume
	Resources

