
Dockerfiles

Florent Glück - florent.gluck@hesge.ch

May 04, 2025

ISC - HEPIA

Dockerfile

• A Dockerfile is a text file containing instructions on how to build an
image

• Dockerfile = an image’ source code made up of instructions

• As simple as running docker buildx build on a Dockerfile to build an
image!

• Requires the docker-buildx plugin on the client
‣ on Ubuntu/Debian distributions, install it with:

sudo apt-get install docker-buildx

1 / 38

Why a Dockerfile?

• Most images are generic and won’t fullfill our exact needs

• Solution: to customize an existing image!

2 / 38

Image creation and usage workflow (example)

1. Describe the image contents by writing instructions in a Dockerfile:

vim Dockerfile

3 / 38

Image creation and usage workflow (example)

1. Describe the image contents by writing instructions in a Dockerfile:

vim Dockerfile

2. Build the image from the Dockerfile:

docker buildx build -f Dockerfile -t myimage:v1 .

3 / 38

Image creation and usage workflow (example)

1. Describe the image contents by writing instructions in a Dockerfile:

vim Dockerfile

2. Build the image from the Dockerfile:

docker buildx build -f Dockerfile -t myimage:v1 .

3. Instantiate a container from the newly built image:

docker run -it --rm myimage:v1

3 / 38

Main instructions

FROM base image to use

ENV
define an environment variable (exists in Dockerfile as well as at
container execution)

RUN execute commands
COPY/ADD add files to the image
CMD/ENTRYPOINT command to execute when the image is instantiated

WORKDIR
set the working directory (in Dockerfile and container
execution), / by default; creates the directory if nonexistent

USER
set user name/UID and user group/GID to use for subsequent
commands (including at container execution)

4 / 38

Dockerfile basic contents workflow (example)

1. Define the base image with FROM:

FROM alpine:3.21

5 / 38

Dockerfile basic contents workflow (example)

1. Define the base image with FROM:

FROM alpine:3.21

2. Add instructions, e.g. packages to install, actions to perform, etc. with RUN:

RUN apk update # equivalent to apt-get update in Ubuntu/Debian
RUN apk add lighttpd # the package creates a lighttpd user and group

5 / 38

Dockerfile basic contents workflow (example)

1. Define the base image with FROM:

FROM alpine:3.21

2. Add instructions, e.g. packages to install, actions to perform, etc. with RUN:

RUN apk update # equivalent to apt-get update in Ubuntu/Debian
RUN apk add lighttpd # the package creates a lighttpd user and group

3. Copy files from local filesystem into the image with COPY or ADD:

COPY index.html /var/www/localhost/htdocs

5 / 38

Dockerfile basic contents workflow (example)

1. Define the base image with FROM:

FROM alpine:3.21

2. Add instructions, e.g. packages to install, actions to perform, etc. with RUN:

RUN apk update # equivalent to apt-get update in Ubuntu/Debian
RUN apk add lighttpd # the package creates a lighttpd user and group

3. Copy files from local filesystem into the image with COPY or ADD:

COPY index.html /var/www/localhost/htdocs

4. Define default command/entry point with CMD or ENTRYPOINT:

CMD ["lighttpd", "-D", "-f", "/etc/lighttpd/lighttpd.conf"]

5 / 38

Example: image description, creation and container instantiation

1. Write a file named Dockerfile.lighttpd with:

FROM alpine:3.21
RUN apk update
RUN apk add lighttpd
COPY index.html /var/www/localhost/htdocs
CMD ["lighttpd", "-D", "-f", "/etc/lighttpd/lighttpd.conf"]

2. Build an image named mylighttpd and tagged v1:

docker buildx build -f Dockerfile.lighttpd -t mylighttpd:v1 .

6 / 38

Example: image description, creation and container instantiation

1. Write a file named Dockerfile.lighttpd with:

FROM alpine:3.21
RUN apk update
RUN apk add lighttpd
COPY index.html /var/www/localhost/htdocs
CMD ["lighttpd", "-D", "-f", "/etc/lighttpd/lighttpd.conf"]

2. Build an image named mylighttpd and tagged v1:

docker buildx build -f Dockerfile.lighttpd -t mylighttpd:v1 .

3. Instantiate a container named websrv from the newly built image:

docker run -it --rm --name websrv mylighttpd:v1

6 / 38

Environment variables (ENV)

• Environment variables can be declared in a Dockerfile using ENV, e.g.:

ENV EDITOR=vi

• These variables still exist during the life-cycle of the container!

• The DEBIAN_FRONTEND variable is particularly useful when set to
noninteractive1

1See man 7 debconf as to why
7 / 38

Injecting environment variables at runtime

• Environment variables (here PIPO and blah) can be injected when
running a container (runtime):

docker run -e PIPO=1234 -e blah=xyz alpine

• Environment variables can also be defined in an env file:

docker run --env-file pipo alpine

where the pipo env file contains:

PIPO=1234
blah=xyz

8 / 38

COPY vs ADD

• COPY/ADD both copy files from a “source” into a Docker image

• COPY can only copy a local file or directory from the host into the image

• ADD is similar to COPY but more powerful as it supports:
‣ wildcards:

– ADD hom* /mydir/

– ADD hom?.txt /mydir/

‣ decompressing local archives (.tar.gz, etc.) into the image
‣ retrieving remote files (url)
‣ cloning a git repository

9 / 38

COPY vs ADD: example

Copy index.html in the client’s current dir to /var/www in the image:
COPY index.html /var/www

Copy data.tar.gz in the client’s current dir to /var/www in the image:
COPY data.tar.gz /var/www

Decompress data.tar.gz to /var/www in the image:
ADD data.tar.gz /var/www

Clone the git repository into /virtu in the image:
ADD https://gitedu.hesge.ch/flg_courses/virtualization/virtualization_pub_spring25.git /virtu

10 / 38

CMD

• CMD specifies which command to execute when the image is
instantiated:

CMD ["command","arg1","arg2",...]

CMD command arg1 arg2

Avoid the last variant as it executes command with /bin/sh -c

• CMD can be overriden or set when running a container, as shown below
with COMMAND ARG...:

docker run [OPTIONS] IMAGE[:TAG] [COMMAND] [ARG...]

• Only the last CMD of a Dockerfile is executed!
11 / 38

ENTRYPOINT

• ENTRYPOINT also specifies which command to execute when the image
is instantiated

• Possible to override it when --entrypoint is passed to run

• What’s the purpose of ENTRYPOINT given CMD already exists?
‣ CMD is appended to ENTRYPOINT!

ENTRYPOINT ["git"] # At container execution, will execute:

CMD ["--help"] # git --help

• ENTRYPOINT + CMD allows to specify default arguments which can be
overriden!

12 / 38

ENTRYPOINT vs CMD

• ENTRYPOINT should be defined when using the container as an
executable

• CMD should be used as a way of defining default arguments for an
ENTRYPOINT command or for executing commands in a container

• CMD is overridden when running the container with alternative
arguments

• If CMD is defined in a parent image, setting ENTRYPOINT will reset CMD
to an empty value
‣ in this case, CMD must be defined in the current image to have a

value

13 / 38

ENTRYPOINT vs CMD: examples (1/3)

FROM alpine
CMD ["/bin/echo"]

• docker run image → (prints an empty line)
• docker run image blah → error: executable "blah" not found!
• docker run image /bin/echo blah → blah

FROM alpine
ENTRYPOINT ["/bin/echo"]

• docker run image → (prints an empty line)
• docker run image blah → blah
• docker run image pipo molo → pipo molo

14 / 38

ENTRYPOINT vs CMD: examples (2/3)

FROM alpine
ENTRYPOINT ["/bin/echo"]
CMD ["blah"]

• docker run image → blah
• docker run image pipo molo → pipo molo

FROM alpine
CMD ["ls"]
CMD ["/bin/echo"]

• docker run image → (prints an empty line)
• docker run image blah → error: executable "blah" not found!
• docker run image pipo molo → error: executable "pipo" not found!

15 / 38

ENTRYPOINT vs CMD: examples (3/3)

FROM alpine

• docker run image → executes /bin/sh and terminates (since non-
interactive)

• docker run image /bin/echo blah → blah

16 / 38

Identify an image’s CMD or/and ENTRYPOINT

Let myecho be an image with the following contents:

FROM alpine
ENTRYPOINT ["/bin/echo"]
CMD ["pipo"]

Use docker history to display the CMD or ENTRYPOINT of an image:
$ docker history myecho
IMAGE CREATED CREATED BY SIZE
f5044de936b8 2 months ago CMD ["pipo"] 0B
<missing> 2 months ago ENTRYPOINT ["/bin/echo"] 0B
<missing> 2 months ago CMD ["/bin/sh"] 0B
<missing> 2 months ago ADD alpine-minirootfs-3.21.3-x86_64.tar.gz /… 7.83MB

17 / 38

Building an image

• Use docker buildx build to build an image from a Dockerfile and a
build context

• The build command looks for a file named Dockerfile
‣ to specify a different file, use -f xxx

• The build is run by the dockerd daemon → on the server

• The newly built image is stored in the server’s local repository

• To build the myimage:mytag image whose contents is defined in tagada:

docker buildx build . -t myimage:mytag -f tagada

18 / 38

Build context (1/2)

• The build context is a file hierarchy, defined by a directory, and
available to the image builder

• At build time, the client sends the entire context recursively to the
daemon!

• Examples:
‣ specifies the current directory (.) as build context:

docker buildx build . -t myimage:mytag

‣ specifies /tmp/pipo/ as build context:

docker buildx build /tmp/pipo -t myimage:mytag

19 / 38

Build context (2/2)

• Use .dockerignore to specify which files not to be sent to the daemon
(similar to .gitignore)

• Files copied into the image with ADD or COPY must be present in the
context

• Paths specified to ADD or COPY are relative to the context source!

• The location of the Dockerfile has no impact on ADD or COPY

• For performance and security reason, make sure the context is
minimal!

20 / 38

Image size: why layers matter (1/4)

• Every RUN, COPY and ADD line creates a new layer

• Below, lines 1, 4, 5, 6, 7, 8, 9, and 10 each create a new layer:
1 FROM alpine:3.21
2 ENV EDITOR=vi
3 WORKDIR /tmp
4 RUN apk update
5 RUN apk add wget
6 RUN wget https://kernel.org/pub/linux/kernel/v3.0/linux-3.0.tar.gz
7 RUN tar fxz linux-3.0.tar.gz
8 RUN mv linux-3.0/Documentation /home/
9 RUN rm -rf linux-3.0

10 RUN rm linux-3.0.tar.gz
11 WORKDIR /home/Documentation
12 CMD ["ls -F"]

• What’s the issue with this Dockerfile?
21 / 38

Image size: why layers matter (2/4)

• Output of docker history on the previous image:
1 $ docker history linuxdoc:bad
2

3 IMAGE CREATED BY SIZE
4 8e86bc5be9e1 /bin/sh -c #(nop) CMD ["ls -F"] 0B
5 81f9e7660397 /bin/sh -c #(nop) WORKDIR /home/Documentation 0B
6 3997c801e030 /bin/sh -c rm linux-3.0.tar.gz 0B
7 b3cea0d6da79 /bin/sh -c rm -rf linux-3.0 0B
8 71a0aea74ee5 /bin/sh -c mv linux-3.0/Documentation /home/ 14.3MB
9 2fbc5e9e0770 /bin/sh -c tar fxz linux-3.0.tar.gz 421MB
10 1e23ef77e48e /bin/sh -c wget https://kernel.org/pub/linux... 96.7MB
11 d4a7ec1db569 /bin/sh -c apk add wget 2.33MB
12 4c0591a76730 /bin/sh -c apk update 2.47MB
13 970403b690cf /bin/sh -c #(nop) WORKDIR /tmp 0B
14 ff07dd56bc06 /bin/sh -c #(nop) ENV EDITOR=vi 0B
15 8471affe5de5 /bin/sh -c #(nop) CMD ["/bin/sh"] 0B
16 <missing> /bin/sh -c #(nop) ADD file:970e6b2578ef73457... 5.55MB

• Image size: 543MB!
22 / 38

Image size: why layers matter (3/4)

• Remember that:
‣ each layer represents a delta of the changes from the previous layer
‣ a layer’s contents is never removed!

• Previous Dockerfile rewritten to avoid wasting space:
1 FROM alpine:3.21
2 ENV EDITOR=vi
3 WORKDIR /tmp
4 RUN apk update && apk add wget && \
5 wget https://kernel.org/pub/linux/kernel/v3.0/linux-3.0.tar.gz && \
6 tar fxz linux-3.0.tar.gz && \
7 mv linux-3.0/Documentation /home/ && \
8 rm -rf linux-3.0 && \
9 rm linux-3.0.tar.gz && \
10 apk del wget
11 WORKDIR /home/Documentation
12 CMD ["ls -F"]

23 / 38

Image size: why layers matter (4/4)

• Output of docker history on the previous image:
1 $ docker history linuxdoc:good
2

3 IMAGE CREATED BY SIZE
4 25572b8c3b4f /bin/sh -c #(nop) CMD ["ls -F"] 0B
5 8c2c839402cd /bin/sh -c #(nop) WORKDIR /home/Documentation 0B
6 b36242c99985 /bin/sh -c apk update && apk add wget && wget https://kern... 16.77MB
7 994e124747d2 /bin/sh -c #(nop) WORKDIR /tmp 0B
8 098cd05113f9 /bin/sh -c #(nop) ENV EDITOR=vi 0B
9 8471affe5de5 /bin/sh -c #(nop) CMD ["/bin/sh"] 0B
10 <missing> /bin/sh -c #(nop) ADD file:970e6b2578ef73457... 5.55MB

• Image size: 22.4MB

24 / 38

Exporting an image or container’s filesystem

• docker export → exports a container’s filesystem into an image as a
tar archive (to stdout)
‣ archive contains the container’s root filesystem only

• docker save → saves an image’s filesystem into an image as a tar
archive (to stdout)
‣ archive contains the image’s various layers’ contents and meta-

data (e.g. entry-point, etc.)

• Note that docker import and docker load perform the opposite
operations

25 / 38

Docker export: archive’s contents

$ docker run --name myc openjdk:latest
$ docker export myc > rootfs.tar && tar tf rootfs.tar
.dockerenv
bin
boot/
dev/
dev/console
dev/full
dev/initctl
dev/null
dev/ptmx
dev/pts/
dev/random
dev/shm/
dev/tty
dev/tty0
dev/urandom
dev/zero
etc/
etc/aliases
etc/alternatives/
etc/alternatives/jar
etc/alternatives/jarsigner
...

26 / 38

Docker save: archive’s contents

$ docker save openjdk:latest > rootfs.tar && tar tf rootfs.tar
34aba91dbd1358ac48d86995dad4620c73ead6466f94f8dfce622a59892fcb5f.json
8e3b009939a813b63c7c2bae06327fa868cdacb2f33edf524d436a1be3036b9a/
8e3b009939a813b63c7c2bae06327fa868cdacb2f33edf524d436a1be3036b9a/VERSION
8e3b009939a813b63c7c2bae06327fa868cdacb2f33edf524d436a1be3036b9a/json
8e3b009939a813b63c7c2bae06327fa868cdacb2f33edf524d436a1be3036b9a/layer.tar
b04eff89da618fd519087acde0f769f144c30e8b3b6c21cf2310248d24c52015/
b04eff89da618fd519087acde0f769f144c30e8b3b6c21cf2310248d24c52015/VERSION
b04eff89da618fd519087acde0f769f144c30e8b3b6c21cf2310248d24c52015/json
b04eff89da618fd519087acde0f769f144c30e8b3b6c21cf2310248d24c52015/layer.tar
eefb4b5e0bcf55f75dfdc77f8c0c5e4cfaf98e8ff48d350c9ac75768cd019631/
eefb4b5e0bcf55f75dfdc77f8c0c5e4cfaf98e8ff48d350c9ac75768cd019631/VERSION
eefb4b5e0bcf55f75dfdc77f8c0c5e4cfaf98e8ff48d350c9ac75768cd019631/json
eefb4b5e0bcf55f75dfdc77f8c0c5e4cfaf98e8ff48d350c9ac75768cd019631/layer.tar
manifest.json
repositories

27 / 38

Local archive as base image

• Although images can be customized, using existing images might not
always be desirable

• Base image change over time: updates might slightly change behavior
and break things

• We might want full control over the contents of the image
• We might want a minimal image containing only what the app. needs

Solution: instead of using a traditional base image from a repository, use
a local archive as root filesystem

28 / 38

Scratch image

• A local root filesystem archive can be used as base image

• Require the use of a special empty image, named scratch image

• How to obtain a local root filesystem?
‣ use the root filesystem from an existing container
‣ use Debian’s Debootstrap tool
‣ manually create a root filesystem (huge task to do from scratch1)

1Famous project for doing exactly this: https://www.linuxfromscratch.org/
29 / 38

https://docs.docker.com/build/building/base-images/#create-a-full-image-using-tar
https://www.linuxfromscratch.org/

Creating an image from a local root filesystem: example

1. Create container alp from alpine:3.21 image:

docker run --name alp alpine:3.21

2. Export alp container’s filesystem into a tar archive:

docker export alp > alpine_3.21.tar

3. Write a Dockerfile that uses the archive as the root filesystem:

FROM scratch
ADD alpine_3.21.tar /
CMD ["sh"]

4. Build the image from the Dockerfile
30 / 38

Multi-stage builds

• What if you want to build an image containing a specific program that
must be generated from source?
‣ it requires the compiler, all dependencies, etc.

• The resulting image would be very large since the full build
environment is required!

31 / 38

Multi-stage builds

• What if you want to build an image containing a specific program that
must be generated from source?
‣ it requires the compiler, all dependencies, etc.

• The resulting image would be very large since the full build
environment is required!

• How to make the resulting image as small as possible?

31 / 38

Multi-stage builds

• What if you want to build an image containing a specific program that
must be generated from source?
‣ it requires the compiler, all dependencies, etc.

• The resulting image would be very large since the full build
environment is required!

• How to make the resulting image as small as possible?
‣ unfortunately, no easy, clean and generic way of doing so…

• Solution?
‣ multi-stage builds!

31 / 38

Multi-stage builds: why?

1. When images require building binaries or artifacts

2. To reduce the size of the final image
• create a cleaner separation between the building of the image and

the final output

32 / 38

Multi-stage builds: how?

Builder stage which builds ninvaders" from source
FROM ubuntu:24.04 AS builder
RUN apt-get update && apt-get install -y build-essential libncurses-dev
WORKDIR /src
RUN wget https://downloads.sourceforge.net/project/ninvaders/ninvaders/0.1.1/
ninvaders-0.1.1.tar.gz
RUN tar fxz ninvaders-0.1.1.tar.gz
WORKDIR ninvaders-0.1.1
RUN make
make install installs ninvaders into /usr/local/bin
RUN make install

Final stage which copies the "ninvaders" file from the builder stage
FROM alpine:latest
RUN apk update && apk add ncurses
COPY --from=builder /usr/local/bin/ninvaders /usr/bin
CMD ["/usr/bin/ninvaders"]

33 / 38

Passing build-time values to the builder

1. Use the --build-arg when building the image, e.g.:

docker buildx build . -t myimage --build-arg base_dir=pipo

2. In Dockerfile, declare the same variable with ARG, e.g.:

ARG base_dir

...

COPY ${base_dir} .

• Avoid using build arguments for passing secrets such as user
credentials, etc. as they are visible in the image history!
‣ use RUN --mount=type=secret instead

34 / 38

https://docs.docker.com/reference/dockerfile/#run---mounttypesecret

Best practices (1/2)

• Use multi-stage builds (when possible)

• Choose the right and smallest base images to avoid unecessary bloat

• Avoid installing unnecessary packages/files

• Minimize the image size by removing unnecessary files
‣ e.g. with Ubuntu/Debian-like distributions:

apt autoremove -y && apt-get clean && rm -rf /var/lib/apt/lists /var/cache/apt

• Use .dockerignore to avoid sending all context files to the daemon

35 / 38

Best practices (2/2)

• Pin base image versions to avoid breaking changes
‣ e.g. FROM alpine:x.y instead of FROM alpine

• Each container should only solve one problem
‣ decoupling applications into multiple containers makes it easier to

scale horizontally and reuse containers

• Create Dockerfiles that define stateless images
‣ any state should be kept outside of the container (typically in

volumes)

36 / 38

Security considerations

• Do not blindly trust others’
images

• Often rebuild your images
‣ keep image up-to-date with

updated dependencies
‣ to avoid cache hits, consider

building with --no-cache
option

Vulnerability Analysis of 2500 Docker Hub Images Wist
K., Helsem M., Gligoroski D. (2021)
Abstract — The use of container technology has skyrocketed during the
last few years, with Docker as the leading container platform. Docker’s
online repository for publicly available container images, called Docker Hub,
hosts over 3.5 million images at the time of writing, making it the world’s
largest community of container images. We perform an extensive
vulnerability analysis of 2500 Docker images.
…
Our main findings reveal that (1) the number of newly introduced
vulnerabilities on Docker Hub is rapidly increasing; (2) certified images are
the most vulnerable; (3) official images are the least vulnerable; (4) there is
no correlation between the number of vulnerabilities and image features
(i.e., number of pulls, number of stars, and days since the last update); (5)
the most severe vulnerabilities originate from two of the most popular
scripting languages, JavaScript and Python; and (6) Python 2.x packages
and jackson-databind packages contain the highest number of severe
vulnerabilities. We perceive our study as the most extensive vulnerability
analysis published in the open literature in the last couple of years.

37 / 38

https://doi.org/10.1007/978-3-030-71017-0_22

Resources

• How the build cache works (official)
https://docs.docker.com/build/cache/

• Dockerfile reference (official)
https://docs.docker.com/reference/dockerfile/

• Best practices for writing Dockerfiles (official)
https://docs.docker.com/build/building/best-practices/

• Create base images (official)
https://docs.docker.com/build/building/base-images/

• Create multi-stage builds (official)
https://docs.docker.com/build/building/multi-stage/

• Explaining Docker Image IDs
https://windsock.io/explaining-docker-image-ids/

38 / 38

https://docs.docker.com/build/cache/
https://docs.docker.com/reference/dockerfile/
https://docs.docker.com/build/building/best-practices/
https://docs.docker.com/build/building/base-images/
https://docs.docker.com/build/building/multi-stage/
https://windsock.io/explaining-docker-image-ids/

	Dockerfile
	Why a Dockerfile?
	Image creation and usage workflow (example)
	Main instructions
	Dockerfile basic contents workflow (example)
	Example: image description, creation and container instantiation
	Environment variables (ENV)
	Injecting environment variables at runtime
	COPY vs ADD
	COPY vs ADD: example
	CMD
	ENTRYPOINT
	ENTRYPOINT vs CMD
	ENTRYPOINT vs CMD: examples (1/3)
	ENTRYPOINT vs CMD: examples (2/3)
	ENTRYPOINT vs CMD: examples (3/3)
	Identify an image's CMD or/and ENTRYPOINT
	Building an image
	Build context (1/2)
	Build context (2/2)
	Image size: why layers matter (1/4)
	Image size: why layers matter (2/4)
	Image size: why layers matter (3/4)
	Image size: why layers matter (4/4)
	Exporting an image or container's filesystem
	Docker export: archive's contents
	Docker save: archive's contents
	Local archive as base image
	Scratch image
	Creating an image from a local root filesystem: example
	Multi-stage builds
	Multi-stage builds: why?
	Multi-stage builds: how?
	Passing build-time values to the builder
	Best practices (1/2)
	Best practices (2/2)
	Security considerations
	Resources

