
Containers

Florent Glück - florent.gluck@hesge.ch

April 07, 2025

ISC - HEPIA



Operating system virtualization

• Technology that enables the kernel to create/manage multiple isolated
user-space instances called containers

• Operating System (OS) virtualization is also called containerization

• Processes inside a container only see the container’s contents and
devices assigned to it
‣ provides isolation (also called sandboxing)

• Kernel provides resource-management to limit the impact of a
container’s activities on other containers

1 / 28



Platform Virtualization vs OS Virtualization (1/2)

2 / 28



Platform virtualization vs OS virtualization (2/2)

• Virtual machines (VMs) have different guest OS, each with their own
kernel

• Containers share the same kernel, but have different root
filesystem, view of process tree, networking, etc.

• Compared to VMs, containers have less overhead, but at the cost of
less isolation (less security)

3 / 28



Root filesystem

What is a root filesystem?

4 / 28



Linux boot process

5 / 28



Root filesystem (rootfs)

• UNIX systems have a single global hierarchy (tree) of files and
directories
‣ it can be composed of different filesystems

• A specific filesystem is mounted at the root of the hierarchy
‣ it is identified by /

• This filesystem is called the root filesystem or simply rootfs

6 / 28



Root filesystem example

/

• 1st partition of SDD
• Read/write
• ext4

/home

• 2nd partition of SDD
• Read/write
• btrfs

/usr

• Remote network share
• Read/write
• NFS

7 / 28



What is a container?

• Multiple definitions depending on the type of containers framework

• A container is a set of processes that are isolated from the host
system and other containers
‣ with most frameworks, the files (rootfs) necessary to run the

containers are provided as an image

• Multiple containers can run within the same host machine

• Containers sometimes called “lightweight VMs” → however, they are
not VMs!

8 / 28



History of containers

• Container technology has existed for a long time in various forms
• Significant popularity gain since the creation of Docker in 2013

Year Technology Operating System
1982 chroot UNIX
1992 namespaces Plan9
2000 BSD Jails FreeBSD
2001 Virtuozzo containers Linux, Windows
2004 Solaris Zones Sun Solaris, Open Solaris
2008 LXC Linux, also called “Linux containers”
2013 Docker Linux, FreeBSD, Mac, Windows
2015 Singularity Linux, containers for HPC
2018 Podman Linux, deamonless Docker alternative

9 / 28



Containers look like virtual machines

From a distance: a container looks like a VM:

• I can SSH into my container
• I can have root access in it
• I can install packages in it
• I have my own network interface
• I can tweak routing table, iptables rules
• I can mount filesystems
• etc.

10 / 28



Containers: why?

• Lightweight, fast, disposable… virtual environments
‣ “boot” in milliseconds
‣ just a few MB of intrinsic disk/memory usage
‣ bare metal performance is possible

• Can be used as “light” virtual machines, but with less isolation

• Can be used to build, ship, deploy, and run applications

11 / 28



Benefits of containerization

• Isolation & security
‣ Provide a complete isolated and restricted OS environment
‣ Allow packaging and isolation of applications with their entire

runtime environment

• Portability
‣ Container packaged with all its dependencies

• Productivity
‣ Performance: lightweight environment
‣ Consolidation: maximize resource utilization
‣ Continuous integration: development, test, deployment

12 / 28



Containers use cases

• Application packaging
‣ flatpak, snap, in-house

• Infrastructure/datacenter use
‣ system virtualization → lightweight “VMs”
‣ limit applications resources’ usage: memory & CPU

• Service compartimentalization
‣ apps/services isolation → security
‣ modularity → scalability and flexibility

• Hosting business
‣ give a user root access without full (root) access to the “real” system

13 / 28

https://www.flatpak.org/
https://snapcraft.io/


Containers philosophy: microservices

• Every component should be isolated to the finest details and containerized
at that level

• Containers can be grouped together to provide a complete application

• Example: Wordpress deployment:
‣ 1 nginx container
‣ 1 mariadb container
‣ 1 php-fpm container

• Benefits of microservices: modularity and scalability!
‣ Ability to scale on demand: create more php-fpm containers when

needed
14 / 28



Containers vs virtual machines

• Containers are lightweight compared to traditional VMs → more containers
can be run per host than traditional VMs

• Unlike containers, VMs require emulation layers → VMs consume more
resources and add overhead

• Starting a container is much faster1 than starting a VM (no boot sequence!)

• Containers share resources with the underlying host machine and user space

• Containers provide much weaker isolation than VMs
‣ containers are not as secure as VMs!

1when running an “equivalent” system
15 / 28



Which is better: containers or virtual machines?

Containers and VMs serve different needs:

• Containers solve deployment issues and permit dynamic scaling more
easily than VMs

• Containers are easier to deploy and more lightweight

• VMs can provide a full desktop environment

• VMs can run different OS than the host and even emulate different
architectures (technically, not VMs anymore)

16 / 28



Limitations of containers

Containers use same kernel as host → imposes strong limitations:

• Limited to running applications compiled for the host’s kernel
architecture
‣ Limitation from an hardware (CPU) point of view: can’t run an
armhf (ARM) container on top of an amd64 (x86-64) system1

‣ Can’t run a Windows container on a Linux system
‣ Limited to the host’s kernel (and its features)

• Reliability: higher impact of a crash, especially in kernel area

1Although possible if using an underlying VM (QEMU) emulating the architecture
17 / 28



Dependency on the host’s kernel

Kernel version imposes implicit limitations:

• Newer kernels are backward compatible with older kernels
‣ new features are added, but old features remain available
‣ typically: syscalls

• The opposite is not true!
‣ an older kernel might not implement a feature present in a newer kernel

• Therefore, an application might require a specific minimal kernel version
‣ this application won’t work in a container based on an older kernel!

18 / 28



Containers: how?

Containers make extensive use of 4 key Linux kernel technologies:

19 / 28



Containers: how?

Containers make extensive use of 4 key Linux kernel technologies:

(1) Capabilities: provide security

19 / 28



Containers: how?

Containers make extensive use of 4 key Linux kernel technologies:

(1) Capabilities: provide security

(2) Namespaces: provide isolation

19 / 28



Containers: how?

Containers make extensive use of 4 key Linux kernel technologies:

(1) Capabilities: provide security

(2) Namespaces: provide isolation

(3) Control groups (cgroups): provide limits on resources

19 / 28



Containers: how?

Containers make extensive use of 4 key Linux kernel technologies:

(1) Capabilities: provide security

(2) Namespaces: provide isolation

(3) Control groups (cgroups): provide limits on resources

(4) Seccomp: provide security

19 / 28



Problem with traditional UNIX privilege model

• Traditional UNIX privilege model divides users into two groups:
‣ normal unprivileged users
‣ superuser (root, effective UID 0)

• Problem: granularity, root/non-root, is too coarse
‣ no limit on possible attacks if root program is compromised!

• Solution?
‣ capabilities

20 / 28



(1) Capabilities

Capabilities provide security through fine-grained privileges

• Capabilities divide root’s privileges into smaller units
‣ 38 capabilities as of Linux 5.4
‣ root user = process with full set of capabilities

• Typical goal: replace SUID1 programs with programs that have capabilities

• Processes and files can each have capabilities
‣ process: defines what privileged operations a process can do
‣ file: what capabilities a process gets when executing the file

– stored in extended attributes (security.capability)

1Programs with the SUID bit set are executed with the same permissions as the file’s owner!
21 / 28



(2) Namespaces

Namespaces provide isolation

• Namespaces affect processes (groups of processes)
• Linux supports multiple namespace types:
‣ UTS: isolates hostnames
‣ mount: isolates filesystems
‣ IPC: isolates inter-process communications
‣ Network: isolates networking resources
‣ PID: isolates process ID
‣ User: isolates user and group IDs
‣ Cgroup: limit ressources

22 / 28



(3) Control groups (cgroups)

Cgroups provide resources limitation

• Cgroups are used to control resources among groups of processes
‣ CPU time, memory, network bandwidth, I/O bandwidth
‣ provide fine-grained control over allocating, prioritizing, denying,

managing, and monitoring system resources
‣ organized hierarchically (like processes) and child cgroups inherit

some of their parents’ attributes

• Hardware resources can be divided up among processes and users to
increase overall efficiency

23 / 28



(4) Seccomp

Seccomp provides security

• Seccomp is used to restrict the system calls a process can use

• Linux kernel provides ∼400 system calls!

• Each syscall is a vector for attack against the kernel

• Most programs use only a small subset of available syscalls
‣ remaining syscalls should never occur
‣ if they do → potential attack!

• Seccomp allows to reduce the attack surface of the kernel
‣ a key component for building application sandboxing

24 / 28



Container frameworks

• LXC provides a “lightweight VM” environment
‣ provides standard OS shell interface

• LXD provides image management on top of LXC

• Docker containers are optimized to run a single application
‣ configuration file specifies the base root filesystem, with dependencies

needed to run a specific application
‣ runs application in a containerized environment
‣ easy way to package an application and all its dependencies

• Podman is a rootless and daemonless (use systemd) alternative to Docker

• Docker & Podman’s goal: ship and run applications anywhere
25 / 28



Container orchestration frameworks

• Docker Compose: framework to manage multiple containers on a
single host

• Docker Swarm & Kubernetes: frameworks to manage multiple
containers on multiple hosts

• Kubernetes: popular container orchestration framework
‣ runs over multiple physical machines
‣ auto-scaling when load increases, restart services when they crash
‣ fairly complex

26 / 28



OCI, containerd and runc

Open Container Initiative (OCI)
• A set of standards for containers, describing the image format, runtime, and

distribution

containerd
• Open-source container runtime from the OCI that handles the lifecycle of

containers, including image management, execution, and storage
• containerd uses runc to execute containers
• containerd used by Docker, Podman and Kubernetes

runc
• Low-level open-source lightweight CLI tool for spawning and running

containers according to the OCI specification
27 / 28

https://opencontainers.org/
https://containerd.io/
https://github.com/opencontainers/runc


Resources

• Practical LXC and LXD “Linux Containers for Virtualization and Orchestration”,
Senthil Kumaran S., Apress 2017

• “Is it safe to run applications in Linux Containers?” Jérôme Petazzoni, 2014

• Namespaces in operation
https://lwn.net/Articles/531114/

• Control groups Linux kernel documentation
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html

28 / 28

https://lwn.net/Articles/531114/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html

	Operating system virtualization
	Platform Virtualization vs OS Virtualization (1/2)
	Platform virtualization vs OS virtualization (2/2)
	Root filesystem
	Linux boot process
	Root filesystem (rootfs)
	Root filesystem example
	What is a container?
	History of containers
	Containers look like virtual machines
	Containers: why?
	Benefits of containerization
	Containers use cases
	Containers philosophy: microservices
	Containers vs virtual machines
	Which is better: containers or virtual machines?
	Limitations of containers
	Dependency on the host's kernel
	Containers: how?
	Problem with traditional UNIX privilege model
	(1) Capabilities
	(2) Namespaces
	(3) Control groups (cgroups)
	(4) Seccomp
	Container frameworks
	Container orchestration frameworks
	OCI, containerd and runc
	Resources

