
Docker Overview

Florent Glück - florent.gluck@hesge.ch

April 07, 2025

ISC - HEPIA

Docker history

• End of 2013: dotCloud Inc. made public and open-source its tool for
managing customer applications: a client/server framework called docker

• In a few months → phenomenal developers and users attraction!

• Consequently dotCloud focused its core business on docker and changed
its name to Docker, Inc.

1 / 42

Why Docker?

• Despite their history, containers (before Docker) didn’t achieve large-
scale adoption

• Main reason is their complexity: containers can be complex, hard to set
up, and difficult to manage and automate

• Docker aimed to change that!

2 / 42

Docker’s goals

• Simplifies the creation and management of containers

3 / 42

Docker’s goals

• Simplifies the creation and management of containers

• Ease the process of packaging/shipping applications independently of
the underlying OS

3 / 42

Docker’s goals

• Simplifies the creation and management of containers

• Ease the process of packaging/shipping applications independently of
the underlying OS

• Make applications deployment reproducible

3 / 42

Docker’s goals

• Simplifies the creation and management of containers

• Ease the process of packaging/shipping applications independently of
the underlying OS

• Make applications deployment reproducible

• Increase applications’ security

3 / 42

What is Docker?

• Open-source engine1 that automates the deployment of applications
into containers

• Platform for developers/sysadmins to develop, ship, and run
applications, based on containers

1Written in Go
4 / 42

Docker components

(a) Docker Engine
• docker client
• docker daemon

(b) Images

(c) Containers

(d) Registries

5 / 42

(a) Docker Engine

• Docker has a client-server architecture

• Docker clients communicate with the docker server (dockerd daemon)
which does all the work

• Docker ships with a CLI1 client (docker) and a RESTful API2 to
interact with dockerd

• Client and daemon can run on the same host (local) or be on different
hosts (remote)

1Command-Line Interface
2https://docs.docker.com/engine/api/latest/

6 / 42

https://docs.docker.com/engine/api/latest/
https://docs.docker.com/engine/api/latest/

(b) Images

• Every container is instantiated (created) from an image
‣ an image is a file tree containing programs and their dependencies

• Hierarchy of images
‣ images have a parent ↔ children relationship

7 / 42

(b) Images

8 / 42

(b) Images

• Images are to containers what classes are to instances in OOP (Object
Oriented Programming)

• An image includes:
‣ a full-fledged isolated root filesystem (e.g. minimal filesystem

provided by a GNU/Linux distribution)
‣ the default program to execute when a container is created from

the image
– this default program is also called the entry-point program

‣ network information (e.g. which ports should be exposed)

9 / 42

(c) Containers

• Containers are instanciated from images and contain one or more
running processes

• A container terminates when its entry-point process terminates,
regardless of the number of other processes still running in the
container

• Docker helps build and deploy containers, inside which applications and
services can be packaged

10 / 42

(c) Containers

• Analogy between container ↔ image and process ↔ program:
‣ a container is an instance of an image
‣ a process is an instance of a program

• Images = building aspect of docker
‣ immutable (static)

• Containers = running aspect of docker
‣ mutable (dynamic)

11 / 42

(d) Registries

• Docker stores images that users build in registries

• Two types of registries, public and private:
‣ Docker, Inc., operates the public registry for images, called the

Docker Hub:
– Anyone can create an account on Docker Hub and use it to share

and store their own images
‣ One can also run their own private registry

– e.g. allows one to store images behind a firewall, etc.

12 / 42

(d) Registries

• Docker Hub hosts the main docker image registry
‣ provides official images for Linux distributions and popular services

(web servers, DBs, languages, etc.)

• The docker daemon has an internal registry of downloaded images
‣ it caches them (on the host were dockerd runs) to avoid

downloading them again

13 / 42

(d) Registries: image names

• Image names follow a precise format:

<repository>[:<tag>]
where <repository> ::= [<user>/]<base name>

• On Docker Hub, only official repositories are at root level, without a
leading <user>/

• The same image can be associated with multiple tags, e.g. ubuntu:24.04
and ubuntu:noble

• Regardless of the tags, an image is always identified by a unique id (hex)

• Tags for a given image can be retrieved using the registry API

14 / 42

https://docs.docker.com/registry/spec/api/

(d) Registries: internal image registry

• To list images available in the internal registry, execute:

docker images

• Images are automatically downloaded by docker when needed

• Image can be manually downloaded via:

docker pull <image name>
docker pull <image id>

if tag is missing in <image name>, :latest will be downloaded

• Both images and containers can be referenced via their user-friendly
name or their id (full or shortened)

15 / 42

Docker architecture and workflow

16 / 42

Docker daemon

• Docker daemon = dockerd program

• Containers are ran by the docker daemon, not the docker client

• By default, docker daemon and docker client are installed on the same
host → local access
‣ client ↔ daemon communicate through a local UNIX socket (/var/
run/docker.sock)

• For remote access, they can be configured to communicate through
SSH or HTTPS (TLS) socket through the use of contexts

17 / 42

Rootless docker daemon

• By default, dockerd daemon runs as root
‣ consequently, root (UID 0) in the container is also root on the server!
‣ security risk!

• Docker daemon can be configured to be rootless1, i.e. it runs as a non-
root user
‣ strongly advisable, but requires specific configuration
‣ unfortunately, Docker doesn’t integrate well with systemd

• Better to use Podman if rootless access is important

1https://docs.docker.com/engine/security/rootless/
18 / 42

https://docs.docker.com/engine/security/rootless/
https://podman.io/
https://docs.docker.com/engine/security/rootless/

Docker client

• Non-root users cannot execute the docker client

• To use the docker client, a user must be part of the docker group
‣ do not run the docker client as root or with sudo1!
‣ instead, add2 the user to the docker group:

sudo usermod -a -G docker <user>

1Rule of thumb: NEVER use sudo unless you REALLY need it!
2https://linuxize.com/post/how-to-add-user-to-group-in-linux/

19 / 42

https://linuxize.com/post/how-to-add-user-to-group-in-linux/

Docker client commands

The set of docker (client) command line arguments is very complete:

• Running docker shows the available commands

• Runing docker help <command> shows the command-related
documentation

20 / 42

Basic docker client commands

docker info Display system-wide information
docker search Search the Docker Hub for images
docker pull Pull an image from a registry
docker run Run a command in a new container
docker exec Run a command in a running container
docker ps List containers
docker start Start one or more terminated containers
docker stop Stop one or more running containers
docker images List internal images
docker rm Remove one or more containers
docker rmi Remove one or more images

21 / 42

Creating and running a first interactive container

Simplest example:

docker run -it debian:12

1. Retrieve the debian:12 image
2. Create a container from this image
3. Bind the current terminal’s stdin, stdout, stderr to the container (-it)
4. Execute the image entry point program present in the image (bash)
5. By using bash it’s possible to browse and alter the container’s filesystem!
6. When the entry point program (bash) exits, the container is terminated,

but it remains on the server (in an exited state)
• add --rm to automatically remove the container once terminated

22 / 42

Creating and running a non-interactive container

docker run --name bla --rm debian echo "Hello world"

1. Retrieve the debian:latest image
2. Create a container from this image

• the container is named blah (option --name)
• the container will automatically be deleted (option --rm)

3. Override the image entry point program with the echo command
4. echo prints the message Hello world to the client’s terminal
5. When echo terminates, the container terminates as well

23 / 42

Listing containers and states

• docker ps lists all running containers

• docker ps -a lists all containers, including non-running ones

• When the entry point program of a container terminates, the container
exits: its states switches from running to exited

• This is why when one executes exit or presses ctrl+d in a running
container featuring a shell as its entry program, the container exits

• docker history image displays the image’s history, including the
entry point program

24 / 42

Executing a program in a container

• Use exec to start another process within an already running container
(e.g. bash to explore or alter the filesystem):

docker exec <options> <container> <cmd> <cmd args>

• Example:
‣ run nob as a Ubuntu Noble container (bash is the entry point prog.):

docker run --name nob -it ubuntu:noble

‣ In another terminal, execute the interactive program top in nob:

docker exec -it nob top

‣ Now, there are 2 processes running in the container!
25 / 42

Attaching to a container

• The attach command attaches the terminal’ stdin, stdout and stderr
to a running container’s entry point command

• Here, attach to the nob container:

docker attach nob

• Important: attach does not create a new process in the container!

• It’s possible to be attached simulatenously multiple times to the same
container

26 / 42

Detaching from a container

• It is possible to detach the standard input/output from a shell in an
interactive container using the following key combination:

ctrl+p ctrl+q

27 / 42

Starting a container

• To re-execute the process (entry point program) of a terminated
container, or to start a container created with docker create, use:

docker start <container>

• The container’s entry point program will be started again with the
same parameters specified at creation time

• For interactive programs (e.g. bash), it’s necessary to rebind the
container’s stdin to the current terminal with -ia:

docker start -ia

28 / 42

Stopping a container

• A container terminates (exits) as soon as its entry point process stops

• A container can also be terminated from the client’s command line:

docker stop <container>

• It’s also possible to send a signal to a container:

docker kill <container>

‣ unless specified, the default signal is SIGKILL

29 / 42

Running background containers

• The -d parameter of docker run creates a container running in the
background (i.e. detached)

• stdout and stderr won’t be shown on the current terminal, but will be
redirected to docker’s internal logs

30 / 42

Reading a container’s output

• Docker redirects stdout and stderr of every container both to the
current terminal and to its internal logs

• With background containers, only logs are available

• To output stdout and stderr logs for a given container:

docker logs <options> <container>

‣ -f to keep the log visible, with updates printed in real-time
‣ --tail=N where N is the number of most recent lines to show

31 / 42

Inspecting a container

• To show detailed information about a container and its process:

docker inspect <container>

• Information is output in the JSON format

• Works for both running and terminated containers

32 / 42

Removing a container

• To remove a terminated container:

docker rm <container>

• Use -f to force deletion, typically for still running containers

• To remove all containers on the server:

docker rm -f $(docker ps -aq)

33 / 42

Running a container as a specified user/group

Running a container’s program with specific user and group IDs can be
achieved with the argument:

-u uid:gid

• For instance:
$ docker run -it --rm ubuntu
root@20c1e77f584d:/# touch /tmp/pipo && ls -l /tmp/pipo
-rw-r--r-- 1 root root 0 Mar 29 14:50 /tmp/pipo

vs:
$ docker run -u 39:60 -it --rm ubuntu
irc@9a7c3adebcdb:/$ touch /tmp/pipo && ls -l /tmp/pipo
-rw-r--r-- 1 irc games 0 Mar 29 14:55 /tmp/pipo

34 / 42

Shell: retrieving the current user/group

• Two ways to retrieve the current user:

$(id -u)

or:

$UID

• Similarily, two ways to retrieve the current group:

$(id -g)

or:

$GROUPS

35 / 42

Limiting a container

• docker run accepts arguments to impose various limits on a container
‣ limits implemented using cgroups on the container’s processes

• Non-exhaustive list (docker run --help for the full list):
Argument Description
--cpu <d> limit the container to d “CPUs” (d is decimal)
-m <n>m limit the container to n MB of RAM

--device-read-bps
limit read rate from a device; format:
<device-path>:<number>[<unit>] (unit: kb, mb, gb)

--device-write-bps
limit write rate to a device; format:
device-path>:<number>[<unit>] (unit: kb, mb, gb)

--cap-drop list drop the given capabilities

36 / 42

Using the docker API

• Docker API described at https://docs.docker.com/engine/api/latest/

• By default, dockerd uses the UNIX socket /var/run/docker.sock

• Basic examples, using curl for HTTP requests and jq for JSON
parsing:

docker info
curl -X GET --unix-socket /var/run/docker.sock
 http://localhost/info|jq .

docker images
curl -X GET --unix-socket /var/run/docker.sock
 http://localhost/images/json|jq '.[].RepoTags'

37 / 42

https://docs.docker.com/engine/api/latest/

Docker context

• A Docker context is a configuration mechanism allowing to manage
multiple Docker environments

• Allows to easily switch between different Docker backends (local,
remote with ssh, remote with https, cloud, etc.)

• Remote ssh access requires ssh public key authentication (key pair)
‣ remote user must exist on the remote host and be in the docker

group

• Use docker context to display commands related to Docker context

38 / 42

https://docs.docker.com/engine/security/protect-access/#use-tls-https-to-protect-the-docker-daemon-socket

Creating and using a context

• Create a context with docker context create, e.g.:

docker context create --docker host=ssh://myuser@my.host.net myremote

• List available contexts with:

docker context ls

• Display the current context with:

docker context show

• Use docker context use to switch to a specified context, e.g.:

docker context use myremote

39 / 42

Docker installation

• To install the Docker Engine (daemon + client) on Debian/Ubuntu:

sudo apt-get install docker.io

• Make sure the docker service (dockerd deamon) is started:

sudo systemctl start docker

• Enable the docker service at boot time:

sudo systemctl enable docker

40 / 42

Docker Desktop

• Docker Desktop is a Docker bundle/environment providing:
‣ Docker Engine (dockerd + docker client)
‣ Docker Compose
‣ A GUI and system tray integration
‣ Filesystem sharing ability with the host
‣ Networking configuration

• Based on a VM running Linux!

• Originally created to give the ability to Windows and Mac users to use
Docker

41 / 42

Resources

• Docker in Action, Jeff Nickoloff, Manning 2016

• The Docker Book, James Turnbull, December 2018

• Docker official documentation: https://docs.docker.com

42 / 42

https://docs.docker.com

	Docker history
	Why Docker?
	Docker's goals
	What is Docker?
	Docker components
	(a) Docker Engine
	(b) Images
	(b) Images
	(c) Containers
	(c) Containers
	(d) Registries
	(d) Registries
	(d) Registries: image names
	(d) Registries: internal image registry
	Docker architecture and workflow
	Docker daemon
	Rootless docker daemon
	Docker client
	Docker client commands
	Basic docker client commands
	Creating and running a first interactive container
	Creating and running a non-interactive container
	Listing containers and states
	Executing a program in a container
	Attaching to a container
	Detaching from a container
	Starting a container
	Stopping a container
	Running background containers
	Reading a container's output
	Inspecting a container
	Removing a container
	Running a container as a specified user/group
	Shell: retrieving the current user/group
	Limiting a container
	Using the docker API
	Docker context
	Creating and using a context
	Docker installation
	Docker Desktop
	Resources

