diff --git a/lab3.zip b/lab3.zip
new file mode 100644
index 0000000000000000000000000000000000000000..04bcfd0df37de238a57ffdf2ccc2a415a10b826c
Binary files /dev/null and b/lab3.zip differ
diff --git a/lab4/lib/cuon-matrix.js b/lab4/lib/cuon-matrix.js
new file mode 100644
index 0000000000000000000000000000000000000000..ded82a7d2b418e9e99b3ece571b40164ec13cbe6
--- /dev/null
+++ b/lab4/lib/cuon-matrix.js
@@ -0,0 +1,741 @@
+// cuon-matrix.js (c) 2012 kanda and matsuda
+/** 
+ * This is a class treating 4x4 matrix.
+ * This class contains the function that is equivalent to OpenGL matrix stack.
+ * The matrix after conversion is calculated by multiplying a conversion matrix from the right.
+ * The matrix is replaced by the calculated result.
+ */
+
+/**
+ * Constructor of Matrix4
+ * If opt_src is specified, new matrix is initialized by opt_src.
+ * Otherwise, new matrix is initialized by identity matrix.
+ * @param opt_src source matrix(option)
+ */
+var Matrix4 = function(opt_src) {
+  var i, s, d;
+  if (opt_src && typeof opt_src === 'object' && opt_src.hasOwnProperty('elements')) {
+    s = opt_src.elements;
+    d = new Float32Array(16);
+    for (i = 0; i < 16; ++i) {
+      d[i] = s[i];
+    }
+    this.elements = d;
+  } else {
+    this.elements = new Float32Array([1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]);
+  }
+};
+
+/**
+ * Set the identity matrix.
+ * @return this
+ */
+Matrix4.prototype.setIdentity = function() {
+  var e = this.elements;
+  e[0] = 1;   e[4] = 0;   e[8]  = 0;   e[12] = 0;
+  e[1] = 0;   e[5] = 1;   e[9]  = 0;   e[13] = 0;
+  e[2] = 0;   e[6] = 0;   e[10] = 1;   e[14] = 0;
+  e[3] = 0;   e[7] = 0;   e[11] = 0;   e[15] = 1;
+  return this;
+};
+
+/**
+ * Copy matrix.
+ * @param src source matrix
+ * @return this
+ */
+Matrix4.prototype.set = function(src) {
+  var i, s, d;
+
+  s = src.elements;
+  d = this.elements;
+
+  if (s === d) {
+    return;
+  }
+    
+  for (i = 0; i < 16; ++i) {
+    d[i] = s[i];
+  }
+
+  return this;
+};
+
+/**
+ * Multiply the matrix from the right.
+ * @param other The multiply matrix
+ * @return this
+ */
+Matrix4.prototype.concat = function(other) {
+  var i, e, a, b, ai0, ai1, ai2, ai3;
+  
+  // Calculate e = a * b
+  e = this.elements;
+  a = this.elements;
+  b = other.elements;
+  
+  // If e equals b, copy b to temporary matrix.
+  if (e === b) {
+    b = new Float32Array(16);
+    for (i = 0; i < 16; ++i) {
+      b[i] = e[i];
+    }
+  }
+  
+  for (i = 0; i < 4; i++) {
+    ai0=a[i];  ai1=a[i+4];  ai2=a[i+8];  ai3=a[i+12];
+    e[i]    = ai0 * b[0]  + ai1 * b[1]  + ai2 * b[2]  + ai3 * b[3];
+    e[i+4]  = ai0 * b[4]  + ai1 * b[5]  + ai2 * b[6]  + ai3 * b[7];
+    e[i+8]  = ai0 * b[8]  + ai1 * b[9]  + ai2 * b[10] + ai3 * b[11];
+    e[i+12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15];
+  }
+  
+  return this;
+};
+Matrix4.prototype.multiply = Matrix4.prototype.concat;
+
+/**
+ * Multiply the three-dimensional vector.
+ * @param pos  The multiply vector
+ * @return The result of multiplication(Float32Array)
+ */
+Matrix4.prototype.multiplyVector3 = function(pos) {
+  var e = this.elements;
+  var p = pos.elements;
+  var v = new Vector3();
+  var result = v.elements;
+
+  result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + e[12];
+  result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + e[13];
+  result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[14];
+
+  return v;
+};
+
+/**
+ * Multiply the four-dimensional vector.
+ * @param pos  The multiply vector
+ * @return The result of multiplication(Float32Array)
+ */
+Matrix4.prototype.multiplyVector4 = function(pos) {
+  var e = this.elements;
+  var p = pos.elements;
+  var v = new Vector4();
+  var result = v.elements;
+
+  result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + p[3] * e[12];
+  result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + p[3] * e[13];
+  result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14];
+  result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15];
+
+  return v;
+};
+
+/**
+ * Transpose the matrix.
+ * @return this
+ */
+Matrix4.prototype.transpose = function() {
+  var e, t;
+
+  e = this.elements;
+
+  t = e[ 1];  e[ 1] = e[ 4];  e[ 4] = t;
+  t = e[ 2];  e[ 2] = e[ 8];  e[ 8] = t;
+  t = e[ 3];  e[ 3] = e[12];  e[12] = t;
+  t = e[ 6];  e[ 6] = e[ 9];  e[ 9] = t;
+  t = e[ 7];  e[ 7] = e[13];  e[13] = t;
+  t = e[11];  e[11] = e[14];  e[14] = t;
+
+  return this;
+};
+
+/**
+ * Calculate the inverse matrix of specified matrix, and set to this.
+ * @param other The source matrix
+ * @return this
+ */
+Matrix4.prototype.setInverseOf = function(other) {
+  var i, s, d, inv, det;
+
+  s = other.elements;
+  d = this.elements;
+  inv = new Float32Array(16);
+
+  inv[0]  =   s[5]*s[10]*s[15] - s[5] *s[11]*s[14] - s[9] *s[6]*s[15]
+            + s[9]*s[7] *s[14] + s[13]*s[6] *s[11] - s[13]*s[7]*s[10];
+  inv[4]  = - s[4]*s[10]*s[15] + s[4] *s[11]*s[14] + s[8] *s[6]*s[15]
+            - s[8]*s[7] *s[14] - s[12]*s[6] *s[11] + s[12]*s[7]*s[10];
+  inv[8]  =   s[4]*s[9] *s[15] - s[4] *s[11]*s[13] - s[8] *s[5]*s[15]
+            + s[8]*s[7] *s[13] + s[12]*s[5] *s[11] - s[12]*s[7]*s[9];
+  inv[12] = - s[4]*s[9] *s[14] + s[4] *s[10]*s[13] + s[8] *s[5]*s[14]
+            - s[8]*s[6] *s[13] - s[12]*s[5] *s[10] + s[12]*s[6]*s[9];
+
+  inv[1]  = - s[1]*s[10]*s[15] + s[1] *s[11]*s[14] + s[9] *s[2]*s[15]
+            - s[9]*s[3] *s[14] - s[13]*s[2] *s[11] + s[13]*s[3]*s[10];
+  inv[5]  =   s[0]*s[10]*s[15] - s[0] *s[11]*s[14] - s[8] *s[2]*s[15]
+            + s[8]*s[3] *s[14] + s[12]*s[2] *s[11] - s[12]*s[3]*s[10];
+  inv[9]  = - s[0]*s[9] *s[15] + s[0] *s[11]*s[13] + s[8] *s[1]*s[15]
+            - s[8]*s[3] *s[13] - s[12]*s[1] *s[11] + s[12]*s[3]*s[9];
+  inv[13] =   s[0]*s[9] *s[14] - s[0] *s[10]*s[13] - s[8] *s[1]*s[14]
+            + s[8]*s[2] *s[13] + s[12]*s[1] *s[10] - s[12]*s[2]*s[9];
+
+  inv[2]  =   s[1]*s[6]*s[15] - s[1] *s[7]*s[14] - s[5] *s[2]*s[15]
+            + s[5]*s[3]*s[14] + s[13]*s[2]*s[7]  - s[13]*s[3]*s[6];
+  inv[6]  = - s[0]*s[6]*s[15] + s[0] *s[7]*s[14] + s[4] *s[2]*s[15]
+            - s[4]*s[3]*s[14] - s[12]*s[2]*s[7]  + s[12]*s[3]*s[6];
+  inv[10] =   s[0]*s[5]*s[15] - s[0] *s[7]*s[13] - s[4] *s[1]*s[15]
+            + s[4]*s[3]*s[13] + s[12]*s[1]*s[7]  - s[12]*s[3]*s[5];
+  inv[14] = - s[0]*s[5]*s[14] + s[0] *s[6]*s[13] + s[4] *s[1]*s[14]
+            - s[4]*s[2]*s[13] - s[12]*s[1]*s[6]  + s[12]*s[2]*s[5];
+
+  inv[3]  = - s[1]*s[6]*s[11] + s[1]*s[7]*s[10] + s[5]*s[2]*s[11]
+            - s[5]*s[3]*s[10] - s[9]*s[2]*s[7]  + s[9]*s[3]*s[6];
+  inv[7]  =   s[0]*s[6]*s[11] - s[0]*s[7]*s[10] - s[4]*s[2]*s[11]
+            + s[4]*s[3]*s[10] + s[8]*s[2]*s[7]  - s[8]*s[3]*s[6];
+  inv[11] = - s[0]*s[5]*s[11] + s[0]*s[7]*s[9]  + s[4]*s[1]*s[11]
+            - s[4]*s[3]*s[9]  - s[8]*s[1]*s[7]  + s[8]*s[3]*s[5];
+  inv[15] =   s[0]*s[5]*s[10] - s[0]*s[6]*s[9]  - s[4]*s[1]*s[10]
+            + s[4]*s[2]*s[9]  + s[8]*s[1]*s[6]  - s[8]*s[2]*s[5];
+
+  det = s[0]*inv[0] + s[1]*inv[4] + s[2]*inv[8] + s[3]*inv[12];
+  if (det === 0) {
+    return this;
+  }
+
+  det = 1 / det;
+  for (i = 0; i < 16; i++) {
+    d[i] = inv[i] * det;
+  }
+
+  return this;
+};
+
+/**
+ * Calculate the inverse matrix of this, and set to this.
+ * @return this
+ */
+Matrix4.prototype.invert = function() {
+  return this.setInverseOf(this);
+};
+
+/**
+ * Set the orthographic projection matrix.
+ * @param left The coordinate of the left of clipping plane.
+ * @param right The coordinate of the right of clipping plane.
+ * @param bottom The coordinate of the bottom of clipping plane.
+ * @param top The coordinate of the top top clipping plane.
+ * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
+ * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
+ * @return this
+ */
+Matrix4.prototype.setOrtho = function(left, right, bottom, top, near, far) {
+  var e, rw, rh, rd;
+
+  if (left === right || bottom === top || near === far) {
+    throw 'null frustum';
+  }
+
+  rw = 1 / (right - left);
+  rh = 1 / (top - bottom);
+  rd = 1 / (far - near);
+
+  e = this.elements;
+
+  e[0]  = 2 * rw;
+  e[1]  = 0;
+  e[2]  = 0;
+  e[3]  = 0;
+
+  e[4]  = 0;
+  e[5]  = 2 * rh;
+  e[6]  = 0;
+  e[7]  = 0;
+
+  e[8]  = 0;
+  e[9]  = 0;
+  e[10] = -2 * rd;
+  e[11] = 0;
+
+  e[12] = -(right + left) * rw;
+  e[13] = -(top + bottom) * rh;
+  e[14] = -(far + near) * rd;
+  e[15] = 1;
+
+  return this;
+};
+
+/**
+ * Multiply the orthographic projection matrix from the right.
+ * @param left The coordinate of the left of clipping plane.
+ * @param right The coordinate of the right of clipping plane.
+ * @param bottom The coordinate of the bottom of clipping plane.
+ * @param top The coordinate of the top top clipping plane.
+ * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
+ * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
+ * @return this
+ */
+Matrix4.prototype.ortho = function(left, right, bottom, top, near, far) {
+  return this.concat(new Matrix4().setOrtho(left, right, bottom, top, near, far));
+};
+
+/**
+ * Set the perspective projection matrix.
+ * @param left The coordinate of the left of clipping plane.
+ * @param right The coordinate of the right of clipping plane.
+ * @param bottom The coordinate of the bottom of clipping plane.
+ * @param top The coordinate of the top top clipping plane.
+ * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+ * @param far The distances to the farther depth clipping plane. This value must be plus value.
+ * @return this
+ */
+Matrix4.prototype.setFrustum = function(left, right, bottom, top, near, far) {
+  var e, rw, rh, rd;
+
+  if (left === right || top === bottom || near === far) {
+    throw 'null frustum';
+  }
+  if (near <= 0) {
+    throw 'near <= 0';
+  }
+  if (far <= 0) {
+    throw 'far <= 0';
+  }
+
+  rw = 1 / (right - left);
+  rh = 1 / (top - bottom);
+  rd = 1 / (far - near);
+
+  e = this.elements;
+
+  e[ 0] = 2 * near * rw;
+  e[ 1] = 0;
+  e[ 2] = 0;
+  e[ 3] = 0;
+
+  e[ 4] = 0;
+  e[ 5] = 2 * near * rh;
+  e[ 6] = 0;
+  e[ 7] = 0;
+
+  e[ 8] = (right + left) * rw;
+  e[ 9] = (top + bottom) * rh;
+  e[10] = -(far + near) * rd;
+  e[11] = -1;
+
+  e[12] = 0;
+  e[13] = 0;
+  e[14] = -2 * near * far * rd;
+  e[15] = 0;
+
+  return this;
+};
+
+/**
+ * Multiply the perspective projection matrix from the right.
+ * @param left The coordinate of the left of clipping plane.
+ * @param right The coordinate of the right of clipping plane.
+ * @param bottom The coordinate of the bottom of clipping plane.
+ * @param top The coordinate of the top top clipping plane.
+ * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+ * @param far The distances to the farther depth clipping plane. This value must be plus value.
+ * @return this
+ */
+Matrix4.prototype.frustum = function(left, right, bottom, top, near, far) {
+  return this.concat(new Matrix4().setFrustum(left, right, bottom, top, near, far));
+};
+
+/**
+ * Set the perspective projection matrix by fovy and aspect.
+ * @param fovy The angle between the upper and lower sides of the frustum.
+ * @param aspect The aspect ratio of the frustum. (width/height)
+ * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+ * @param far The distances to the farther depth clipping plane. This value must be plus value.
+ * @return this
+ */
+Matrix4.prototype.setPerspective = function(fovy, aspect, near, far) {
+  var e, rd, s, ct;
+
+  if (near === far || aspect === 0) {
+    throw 'null frustum';
+  }
+  if (near <= 0) {
+    throw 'near <= 0';
+  }
+  if (far <= 0) {
+    throw 'far <= 0';
+  }
+
+  fovy = Math.PI * fovy / 180 / 2;
+  s = Math.sin(fovy);
+  if (s === 0) {
+    throw 'null frustum';
+  }
+
+  rd = 1 / (far - near);
+  ct = Math.cos(fovy) / s;
+
+  e = this.elements;
+
+  e[0]  = ct / aspect;
+  e[1]  = 0;
+  e[2]  = 0;
+  e[3]  = 0;
+
+  e[4]  = 0;
+  e[5]  = ct;
+  e[6]  = 0;
+  e[7]  = 0;
+
+  e[8]  = 0;
+  e[9]  = 0;
+  e[10] = -(far + near) * rd;
+  e[11] = -1;
+
+  e[12] = 0;
+  e[13] = 0;
+  e[14] = -2 * near * far * rd;
+  e[15] = 0;
+
+  return this;
+};
+
+/**
+ * Multiply the perspective projection matrix from the right.
+ * @param fovy The angle between the upper and lower sides of the frustum.
+ * @param aspect The aspect ratio of the frustum. (width/height)
+ * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+ * @param far The distances to the farther depth clipping plane. This value must be plus value.
+ * @return this
+ */
+Matrix4.prototype.perspective = function(fovy, aspect, near, far) {
+  return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far));
+};
+
+/**
+ * Set the matrix for scaling.
+ * @param x The scale factor along the X axis
+ * @param y The scale factor along the Y axis
+ * @param z The scale factor along the Z axis
+ * @return this
+ */
+Matrix4.prototype.setScale = function(x, y, z) {
+  var e = this.elements;
+  e[0] = x;  e[4] = 0;  e[8]  = 0;  e[12] = 0;
+  e[1] = 0;  e[5] = y;  e[9]  = 0;  e[13] = 0;
+  e[2] = 0;  e[6] = 0;  e[10] = z;  e[14] = 0;
+  e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+  return this;
+};
+
+/**
+ * Multiply the matrix for scaling from the right.
+ * @param x The scale factor along the X axis
+ * @param y The scale factor along the Y axis
+ * @param z The scale factor along the Z axis
+ * @return this
+ */
+Matrix4.prototype.scale = function(x, y, z) {
+  var e = this.elements;
+  e[0] *= x;  e[4] *= y;  e[8]  *= z;
+  e[1] *= x;  e[5] *= y;  e[9]  *= z;
+  e[2] *= x;  e[6] *= y;  e[10] *= z;
+  e[3] *= x;  e[7] *= y;  e[11] *= z;
+  return this;
+};
+
+/**
+ * Set the matrix for translation.
+ * @param x The X value of a translation.
+ * @param y The Y value of a translation.
+ * @param z The Z value of a translation.
+ * @return this
+ */
+Matrix4.prototype.setTranslate = function(x, y, z) {
+  var e = this.elements;
+  e[0] = 1;  e[4] = 0;  e[8]  = 0;  e[12] = x;
+  e[1] = 0;  e[5] = 1;  e[9]  = 0;  e[13] = y;
+  e[2] = 0;  e[6] = 0;  e[10] = 1;  e[14] = z;
+  e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+  return this;
+};
+
+/**
+ * Multiply the matrix for translation from the right.
+ * @param x The X value of a translation.
+ * @param y The Y value of a translation.
+ * @param z The Z value of a translation.
+ * @return this
+ */
+Matrix4.prototype.translate = function(x, y, z) {
+  var e = this.elements;
+  e[12] += e[0] * x + e[4] * y + e[8]  * z;
+  e[13] += e[1] * x + e[5] * y + e[9]  * z;
+  e[14] += e[2] * x + e[6] * y + e[10] * z;
+  e[15] += e[3] * x + e[7] * y + e[11] * z;
+  return this;
+};
+
+/**
+ * Set the matrix for rotation.
+ * The vector of rotation axis may not be normalized.
+ * @param angle The angle of rotation (degrees)
+ * @param x The X coordinate of vector of rotation axis.
+ * @param y The Y coordinate of vector of rotation axis.
+ * @param z The Z coordinate of vector of rotation axis.
+ * @return this
+ */
+Matrix4.prototype.setRotate = function(angle, x, y, z) {
+  var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs;
+
+  angle = Math.PI * angle / 180;
+  e = this.elements;
+
+  s = Math.sin(angle);
+  c = Math.cos(angle);
+
+  if (0 !== x && 0 === y && 0 === z) {
+    // Rotation around X axis
+    if (x < 0) {
+      s = -s;
+    }
+    e[0] = 1;  e[4] = 0;  e[ 8] = 0;  e[12] = 0;
+    e[1] = 0;  e[5] = c;  e[ 9] =-s;  e[13] = 0;
+    e[2] = 0;  e[6] = s;  e[10] = c;  e[14] = 0;
+    e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+  } else if (0 === x && 0 !== y && 0 === z) {
+    // Rotation around Y axis
+    if (y < 0) {
+      s = -s;
+    }
+    e[0] = c;  e[4] = 0;  e[ 8] = s;  e[12] = 0;
+    e[1] = 0;  e[5] = 1;  e[ 9] = 0;  e[13] = 0;
+    e[2] =-s;  e[6] = 0;  e[10] = c;  e[14] = 0;
+    e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+  } else if (0 === x && 0 === y && 0 !== z) {
+    // Rotation around Z axis
+    if (z < 0) {
+      s = -s;
+    }
+    e[0] = c;  e[4] =-s;  e[ 8] = 0;  e[12] = 0;
+    e[1] = s;  e[5] = c;  e[ 9] = 0;  e[13] = 0;
+    e[2] = 0;  e[6] = 0;  e[10] = 1;  e[14] = 0;
+    e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+  } else {
+    // Rotation around another axis
+    len = Math.sqrt(x*x + y*y + z*z);
+    if (len !== 1) {
+      rlen = 1 / len;
+      x *= rlen;
+      y *= rlen;
+      z *= rlen;
+    }
+    nc = 1 - c;
+    xy = x * y;
+    yz = y * z;
+    zx = z * x;
+    xs = x * s;
+    ys = y * s;
+    zs = z * s;
+
+    e[ 0] = x*x*nc +  c;
+    e[ 1] = xy *nc + zs;
+    e[ 2] = zx *nc - ys;
+    e[ 3] = 0;
+
+    e[ 4] = xy *nc - zs;
+    e[ 5] = y*y*nc +  c;
+    e[ 6] = yz *nc + xs;
+    e[ 7] = 0;
+
+    e[ 8] = zx *nc + ys;
+    e[ 9] = yz *nc - xs;
+    e[10] = z*z*nc +  c;
+    e[11] = 0;
+
+    e[12] = 0;
+    e[13] = 0;
+    e[14] = 0;
+    e[15] = 1;
+  }
+
+  return this;
+};
+
+/**
+ * Multiply the matrix for rotation from the right.
+ * The vector of rotation axis may not be normalized.
+ * @param angle The angle of rotation (degrees)
+ * @param x The X coordinate of vector of rotation axis.
+ * @param y The Y coordinate of vector of rotation axis.
+ * @param z The Z coordinate of vector of rotation axis.
+ * @return this
+ */
+Matrix4.prototype.rotate = function(angle, x, y, z) {
+  return this.concat(new Matrix4().setRotate(angle, x, y, z));
+};
+
+/**
+ * Set the viewing matrix.
+ * @param eyeX, eyeY, eyeZ The position of the eye point.
+ * @param centerX, centerY, centerZ The position of the reference point.
+ * @param upX, upY, upZ The direction of the up vector.
+ * @return this
+ */
+Matrix4.prototype.setLookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
+  var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz;
+
+  fx = centerX - eyeX;
+  fy = centerY - eyeY;
+  fz = centerZ - eyeZ;
+
+  // Normalize f.
+  rlf = 1 / Math.sqrt(fx*fx + fy*fy + fz*fz);
+  fx *= rlf;
+  fy *= rlf;
+  fz *= rlf;
+
+  // Calculate cross product of f and up.
+  sx = fy * upZ - fz * upY;
+  sy = fz * upX - fx * upZ;
+  sz = fx * upY - fy * upX;
+
+  // Normalize s.
+  rls = 1 / Math.sqrt(sx*sx + sy*sy + sz*sz);
+  sx *= rls;
+  sy *= rls;
+  sz *= rls;
+
+  // Calculate cross product of s and f.
+  ux = sy * fz - sz * fy;
+  uy = sz * fx - sx * fz;
+  uz = sx * fy - sy * fx;
+
+  // Set to this.
+  e = this.elements;
+  e[0] = sx;
+  e[1] = ux;
+  e[2] = -fx;
+  e[3] = 0;
+
+  e[4] = sy;
+  e[5] = uy;
+  e[6] = -fy;
+  e[7] = 0;
+
+  e[8] = sz;
+  e[9] = uz;
+  e[10] = -fz;
+  e[11] = 0;
+
+  e[12] = 0;
+  e[13] = 0;
+  e[14] = 0;
+  e[15] = 1;
+
+  // Translate.
+  return this.translate(-eyeX, -eyeY, -eyeZ);
+};
+
+/**
+ * Multiply the viewing matrix from the right.
+ * @param eyeX, eyeY, eyeZ The position of the eye point.
+ * @param centerX, centerY, centerZ The position of the reference point.
+ * @param upX, upY, upZ The direction of the up vector.
+ * @return this
+ */
+Matrix4.prototype.lookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
+  return this.concat(new Matrix4().setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ));
+};
+
+/**
+ * Multiply the matrix for project vertex to plane from the right.
+ * @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0".
+ * @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light.
+ * @return this
+ */
+Matrix4.prototype.dropShadow = function(plane, light) {
+  var mat = new Matrix4();
+  var e = mat.elements;
+
+  var dot = plane[0] * light[0] + plane[1] * light[1] + plane[2] * light[2] + plane[3] * light[3];
+
+  e[ 0] = dot - light[0] * plane[0];
+  e[ 1] =     - light[1] * plane[0];
+  e[ 2] =     - light[2] * plane[0];
+  e[ 3] =     - light[3] * plane[0];
+
+  e[ 4] =     - light[0] * plane[1];
+  e[ 5] = dot - light[1] * plane[1];
+  e[ 6] =     - light[2] * plane[1];
+  e[ 7] =     - light[3] * plane[1];
+
+  e[ 8] =     - light[0] * plane[2];
+  e[ 9] =     - light[1] * plane[2];
+  e[10] = dot - light[2] * plane[2];
+  e[11] =     - light[3] * plane[2];
+
+  e[12] =     - light[0] * plane[3];
+  e[13] =     - light[1] * plane[3];
+  e[14] =     - light[2] * plane[3];
+  e[15] = dot - light[3] * plane[3];
+
+  return this.concat(mat);
+}
+
+/**
+ * Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.)
+ * @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.)
+ * @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane.
+ * @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.)
+ * @return this
+ */
+Matrix4.prototype.dropShadowDirectionally = function(normX, normY, normZ, planeX, planeY, planeZ, lightX, lightY, lightZ) {
+  var a = planeX * normX + planeY * normY + planeZ * normZ;
+  return this.dropShadow([normX, normY, normZ, -a], [lightX, lightY, lightZ, 0]);
+};
+
+/**
+ * Constructor of Vector3
+ * If opt_src is specified, new vector is initialized by opt_src.
+ * @param opt_src source vector(option)
+ */
+var Vector3 = function(opt_src) {
+  var v = new Float32Array(3);
+  if (opt_src && typeof opt_src === 'object') {
+    v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2];
+  } 
+  this.elements = v;
+}
+
+/**
+  * Normalize.
+  * @return this
+  */
+Vector3.prototype.normalize = function() {
+  var v = this.elements;
+  var c = v[0], d = v[1], e = v[2], g = Math.sqrt(c*c+d*d+e*e);
+  if(g){
+    if(g == 1)
+        return this;
+   } else {
+     v[0] = 0; v[1] = 0; v[2] = 0;
+     return this;
+   }
+   g = 1/g;
+   v[0] = c*g; v[1] = d*g; v[2] = e*g;
+   return this;
+};
+
+/**
+ * Constructor of Vector4
+ * If opt_src is specified, new vector is initialized by opt_src.
+ * @param opt_src source vector(option)
+ */
+var Vector4 = function(opt_src) {
+  var v = new Float32Array(4);
+  if (opt_src && typeof opt_src === 'object') {
+    v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; v[3] = opt_src[3];
+  } 
+  this.elements = v;
+}
\ No newline at end of file
diff --git a/lab4/src/lab4.html b/lab4/src/lab4.html
index 2bb37bcbd21a70f6bb9acddb83953d93aa5bf516..6bf6d90b9b113e4d442999b4ff99e7528286c1d6 100644
--- a/lab4/src/lab4.html
+++ b/lab4/src/lab4.html
@@ -8,9 +8,14 @@
 <canvas width="400" height="600" id="my-canvas">
   Please use a browser that supports "canvas"
 </canvas>
+<div id="which_light">lumière directionnelle</div>
+<div id="lightx">light x : </div>
+<div id="lighty">light y : </div>
+<div id="lightz">light z : </div>
 <script src="../lib/webgl-utils.js"></script>
 <script src="../lib/webgl-debug.js"></script>
 <script src="../lib/cuon-utils.js"></script>
+<script src="../lib/cuon-matrix.js"></script>
 <script src="lab4.js"></script>
 </body>
 </html>
\ No newline at end of file
diff --git a/lab4/src/lab4.js b/lab4/src/lab4.js
index 105a227db9e7e4d4abde40b5002e7c75eb860fb4..2e15fdd2cf6b74d257a8dd33cc0900c531529590 100644
--- a/lab4/src/lab4.js
+++ b/lab4/src/lab4.js
@@ -1,18 +1,509 @@
+var eyeX = 0.0;
+var eyeY = 3.0;
+var eyeZ = 15.0;
+
+var xLightDir = 0.0;
+var yLightDir = 0.0;
+var zLightDir = 7.0;
+
+var canvas;
+var gl;
+// Model matrix
+var u_MvpMatrix;
+var u_NormalMatrix;
+
+// light color
+var u_LightColor;
+
+// diffuse light direction
+var u_LightDirection;
+
+// ambient light components
+var u_ModelMatrix;
+var u_LightPosition;
+var u_AmbientLight;
+
+// click variable
+var u_Clicked;
+
+which_light = true;
+
+document.onkeydown = checkKey;
+function checkKey(e) {
+  switch (e.key) {
+
+    // camera
+    case 'w':
+      eyeY += 1
+      break;
+    case 's':
+      eyeY -= 1
+      break;
+    case 'a':
+      eyeX -= 1
+      break;
+    case 'd':
+      eyeX += 1
+      break;
+    case 'e':
+      eyeZ += 1
+      break;
+    case 'q':
+      eyeZ -= 1
+      break;
+
+    // light
+    case 'ArrowUp':
+      zLightDir -= 0.1
+      break;
+    case 'ArrowDown':
+      zLightDir += 0.1;
+      break;
+    case 'ArrowLeft':
+      xLightDir -= 0.1;
+      break;
+    case 'ArrowRight':
+      xLightDir += 0.1
+      break;
+    case 'o': // up
+      yLightDir += 0.1
+      break;
+    case 'p': // down
+      yLightDir -= 0.1
+      break;
+
+    // choose light
+    case 'c':
+      which_light = !which_light
+      initElements();
+  }
+};
+
 // Vertex shader program
-const VSHADER_SOURCE =
-  '\n' +
-  // TODO: Implement your vertex shader code here
-  '\n';
+var VSHADER_SOURCE_DIRECTIONAL = 
+  'attribute vec4 a_Position;\n' + 
+  'attribute vec4 a_Color;\n' + 
+  'attribute vec4 a_Normal;\n' +        // Normal
+
+  'uniform mat4 u_MvpMatrix;\n' +
+  'uniform mat4 u_NormalMatrix;\n' +
+  
+  'uniform vec3 u_LightColor;\n' +     // Light color
+  'uniform vec3 u_LightDirection;\n' + // Light direction (in the world coordinate, normalized)
+
+  'varying vec4 v_Color;\n' +
+
+  'uniform bool u_Clicked;\n' +
+
+  'void main() {\n' +
+  '  gl_Position = u_MvpMatrix * a_Position;\n' +
+  '  vec4 normal = u_NormalMatrix * a_Normal;\n' +
+  '  float nDotL = max(dot(u_LightDirection, normalize(normal.xyz)), 0.0);\n' +
+  '  vec3 diffuse = u_LightColor * a_Color.rgb * nDotL;\n' +
+
+  '  if (u_Clicked) {\n' + //  Draw in red if mouse is pressed
+  '    v_Color = vec4(1.0, 0.0, 0.0, 1.0);\n' +
+  '  } else {\n' +
+  '  v_Color = vec4(diffuse, a_Color.a);\n' +
+  '  }\n' +
+  '}\n';
 
 // Fragment shader program
-const FSHADER_SOURCE =
-  '\n' +
-  // TODO: Implement your fragment shader code here
-  '\n';
+var FSHADER_SOURCE_DIRECTIONAL = 
+  
+  'precision mediump float;\n' +
+
+  'varying vec4 v_Color;\n' +
+
+  'void main() {\n' +
+  '  gl_FragColor = v_Color;\n' +
+  '}\n';
+
+var VSHADER_SOURCE_PONCTUAL =
+  'attribute vec4 a_Position;\n' +
+  'attribute vec4 a_Color;\n' +
+  'attribute vec4 a_Normal;\n' +
+
+  'uniform mat4 u_MvpMatrix;\n' +
+  'uniform mat4 u_ModelMatrix;\n' +   
+  'uniform mat4 u_NormalMatrix;\n' + 
+
+  'uniform vec3 u_AmbientLight;\n' + 
+
+  'varying vec3 normal;\n' + 
+  'varying vec4 vertexPosition;\n' + 
+  'varying vec3 ambient;\n' + 
+
+  'varying vec4 v_Color;\n' +
+
+  'uniform bool u_Clicked;\n' +
+
+  'void main() {\n' +
+  '  gl_Position = u_MvpMatrix * a_Position;\n' +
+  '  normal = normalize(vec3(u_NormalMatrix * a_Normal));\n' +
+  '  vertexPosition = u_ModelMatrix * a_Position;\n' +
+
+  '  ambient = u_AmbientLight * a_Color.xyz;\n' +
+
+  '  if (u_Clicked) {\n' + //  Draw in red if mouse is pressed
+  '    v_Color = vec4(1.0, 0.0, 0.0, 1.0);\n' +
+  '  } else {\n' +
+  '    v_Color = a_Color;\n' +
+  '  }\n' +
+  '}\n';
+
+var FSHADER_SOURCE_PONCTUAL =
+  'precision mediump float;\n' +
+
+  'uniform vec3 u_LightColor;\n' +     
+  'uniform vec3 u_LightPosition;\n' +  
+
+  'varying vec4 v_Color;\n' +
+  'varying vec3 normal;\n' + 
+  'varying vec4 vertexPosition;\n' + 
+  'varying vec3 ambient;\n' +
+
+  'void main() {\n' +
+
+  '  vec3 lightDirection = normalize(u_LightPosition - vec3(vertexPosition));\n' +
+  '  float nDotL = max(dot(normal, lightDirection), 0.0);\n' +
+  '  vec3 diffuse = u_LightColor * v_Color.rgb * nDotL;\n' +
+
+  '  gl_FragColor = vec4(diffuse + ambient, v_Color.a);\n' +
+  '}\n';
+
+function initElements(){
+  // Initialize shaders
+  vh_source = VSHADER_SOURCE_DIRECTIONAL;
+  fh_source = FSHADER_SOURCE_DIRECTIONAL;
+  if (!which_light){
+    vh_source = VSHADER_SOURCE_PONCTUAL;
+    fh_source = FSHADER_SOURCE_PONCTUAL;
+  }
+  if (!initShaders(gl, vh_source, fh_source)) {
+    console.log('Failed to intialize shaders.');
+    return;
+  }
+
+  // clear canva
+  gl.clearColor(0, 0, 0, 1);
+  gl.enable(gl.DEPTH_TEST);
+  gl.depthFunc(gl.LEQUAL);
+
+  // Get the storage location of u_MvpMatrix
+  u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');
+  if (!u_MvpMatrix) { 
+    console.log('Failed to get the storage locations of u_MvpMatrix');
+    return -1;
+  }
+
+  u_LightColor = gl.getUniformLocation(gl.program, 'u_LightColor');
+  if (!u_LightColor) { 
+    console.log('Failed to get the storage locations of u_LightColor');
+    return -1;
+  }
+
+  u_NormalMatrix = gl.getUniformLocation(gl.program, 'u_NormalMatrix');
+  if (!u_NormalMatrix) { 
+    console.log('Failed to get the storage locations of u_NormalMatrix');
+    return -1;
+  }
+
+  u_Clicked  = gl.getUniformLocation(gl.program, 'u_Clicked');
+  if (!u_Clicked) { 
+    console.log('Failed to get the storage locations of u_Clicked');
+    return -1;
+  }
+
+  if (which_light){ // directionnal light
+    u_LightDirection = gl.getUniformLocation(gl.program, 'u_LightDirection');
+    if (!u_LightDirection) { 
+      console.log('Failed to get the storage locations of u_LightDirection');
+      return -1;
+    }
+  }else { // ponctual light
+    u_ModelMatrix = gl.getUniformLocation(gl.program, 'u_ModelMatrix');
+    if (!u_ModelMatrix) { 
+      console.log('Failed to get the storage locations of u_ModelMatrix');
+      return -1;
+    }
+
+    u_LightPosition = gl.getUniformLocation(gl.program, 'u_LightPosition');
+    if (!u_LightPosition) { 
+      console.log('Failed to get the storage locations of u_LightPosition');
+      return -1;
+    }
+
+    u_AmbientLight = gl.getUniformLocation(gl.program, 'u_AmbientLight');
+    if (!u_AmbientLight) { 
+      console.log('Failed to get the storage locations of u_AmbientLight');
+      return -1;
+    }
+  }
+
+  gl.uniform1i(u_Clicked, 0); // Pass false to u_Clicked
+}
 
 function main() {
+
   // Retrieve <canvas> element
-  const canvas = document.getElementById('my-canvas');
+  canvas = document.getElementById('my-canvas');
+
+  // Get the rendering context for WebGL
+  gl = getWebGLContext(canvas);
+  if (!gl) {
+    console.log('Failed to get the rendering context for WebGL');
+    return;
+  }
+
+  initElements();
+
+  canvas.onmousedown = function(ev) {   // Mouse is pressed
+    var x = ev.clientX, y = ev.clientY;
+    var rect = ev.target.getBoundingClientRect();
+    if (rect.left <= x && x < rect.right && rect.top <= y && y < rect.bottom) {
+
+      var vpMatrix = new Matrix4();   // View projection matrix
+      // Calculate the view projection matrix
+      vpMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100);
+      vpMatrix.lookAt(eyeX, eyeY, eyeZ, 0, 0, 0, 0, 1, 0);
+      var modelMatrix = new Matrix4();  // Model matrix
+
+      // If pressed position is inside <canvas>, check if it is above object
+      var x_in_canvas = x - rect.left, y_in_canvas = rect.bottom - y;
+      var picked = check(gl, x_in_canvas, y_in_canvas, u_Clicked, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix);
+      if (picked) alert('The Hourglass was selected');
+    }
+  }
+
+  setInterval(onTimerTick, 10);
+}
+
+function onTimerTick() {
+
+  var light = "lumière directionnelle"
+  if (!which_light){
+    light = "lumière ponctuelle"
+  }
+  document.getElementById('which_light').innerHTML = light;
+  document.getElementById('lightx').innerHTML = "light x : " + xLightDir;
+  document.getElementById('lighty').innerHTML = "light y : " + yLightDir;
+  document.getElementById('lightz').innerHTML = "light z : " + zLightDir;
+
+  vpMatrix = new Matrix4();   // View projection matrix
+  // Calculate the view projection matrix
+  vpMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100);
+  vpMatrix.lookAt(eyeX, eyeY, eyeZ, 0, 0, 0, 0, 1, 0);
+
+  gl.uniform3f(u_LightColor, 1.0, 1.0, 1.0);
+  if (which_light){ // diffuse light
+    var lightDirection = new Vector3([xLightDir, yLightDir, zLightDir]);
+    lightDirection.normalize();     // Normalize
+    gl.uniform3fv(u_LightDirection, lightDirection.elements);
+  }else { // ambient light
+    // Set the light direction (in the world coordinate)
+    gl.uniform3f(u_LightPosition, xLightDir, yLightDir, zLightDir);
+    // Set the ambient light
+    gl.uniform3f(u_AmbientLight, 0.3, 0.3, 0.3);
+  }
+
+  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
+
+  var modelMatrix = new Matrix4();  // Model matrix
+
+  /*modelMatrix.rotate(xAngle, 1, 0, 0);
+  modelMatrix.rotate(yAngle, 0, 1, 0);*/
+
+  drawHourglass(gl, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix)
+  //drawSquares(gl, canvas, u_MvpMatrix)
+  drawBase(gl, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix)
+}
+
+function drawHourglass(gl, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix){
+  // Write the positions of trapezes vertices to a vertex shader
+  var n = initVertexBufferHourglass(gl);
+  if (n < 0) {
+    console.log('Failed to set the positions of the vertices');
+    return;
+  }
+
+  var mvpMatrix = new Matrix4();    // Model view projection matrix
+  var normalMatrix = new Matrix4(); // Transformation matrix for normals
+
+  // first half of hourglass
+  modelMatrix.translate(0, 0.0, 0);
+  if (!which_light){ gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); }
+  mvpMatrix.set(vpMatrix).multiply(modelMatrix);
+  gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);
+
+  normalMatrix.setInverseOf(modelMatrix);
+  normalMatrix.transpose();
+  gl.uniformMatrix4fv(u_NormalMatrix, false, normalMatrix.elements);
+
+  gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);
+
+  // second half of hourglass
+  modelMatrix.translate(0, 1.0, 0);
+  modelMatrix.rotate(180, 0, 0, 1);
+  if (!which_light){ gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); }
+  mvpMatrix.set(vpMatrix).multiply(modelMatrix);
+  gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);
+
+  normalMatrix.rotate(180, 0, 0, 1);
+  normalMatrix.transpose();
+  gl.uniformMatrix4fv(u_NormalMatrix, false, normalMatrix.elements);
+
+  gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);
+}
+
+function drawBase(gl, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix){
+  // Write the positions of square vertices to a vertex shader
+  var n = initVertexBufferBase(gl);
+  if (n < 0) {
+    console.log('Failed to set the positions of the vertices');
+    return;
+  }
+
+  var mvpMatrix = new Matrix4();    // Model view projection matrix
+  var normalMatrix = new Matrix4(); // Transformation matrix for normals
+
+  modelMatrix.translate(0, 2.01, 0);
+  if (!which_light){ gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); }
+  mvpMatrix.set(vpMatrix).multiply(modelMatrix);
+  gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);
+
+  normalMatrix.setInverseOf(modelMatrix);
+  normalMatrix.transpose();
+  gl.uniformMatrix4fv(u_NormalMatrix, false, normalMatrix.elements);
+
+  gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);
+}
+
+function initVertexBufferHourglass(gl){
+
+  const vertices = new Float32Array([
+    -0.25, 0.5,  0.25,  0.25, 0.5,  0.25,  -0.5, -0.5, 0.5,  0.5, -0.5, 0.5,     // front
+    0.25, 0.5,  0.25,  0.25, 0.5, -0.25,  0.5, -0.5, 0.5,  0.5, -0.5, -0.5,      // right
+    0.25, 0.5, -0.25,  -0.25, 0.5, -0.25, 0.5, -0.5, -0.5,  -0.5, -0.5, -0.5,    // back
+   -0.25, 0.5, -0.25,  -0.25, 0.5,  0.25, -0.5, -0.5, -0.5,  -0.5, -0.5, 0.5,    // left
+   -0.25, 0.5,  0.25,  0.25, 0.5,  0.25,  -0.25, 0.5, -0.25,   0.25, 0.5, -0.25, // up
+    -0.5, -0.5,  0.5,  0.5, -0.5, 0.5,  -0.5, -0.5, -0.5,  0.5, -0.5, -0.5       // down
+   ]);  
+
+  const colors = new Float32Array([
+     1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,
+     1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,
+     1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,
+     1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,
+     1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,
+     1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0,  1.0, 1.0, 0.0
+   ]);
+
+  const indices = new Uint8Array([
+    0, 1, 2,    1, 2, 3,
+    4, 5, 6,    5, 6, 7,
+    8, 9,10,    9,10,11,
+   12,13,14,   13,14,15,
+   16,17,18,   17,18,19,
+   20,21,22,   21,22,23
+   ]);
+
+  const normals = new Float32Array([
+    0.0, 0.25, 0.25,  0.0, 0.25, 0.25,  0.0, 0.25, 0.25,  0.0, 0.25, 0.25, 
+    0.25, 0.25, 0.0,  0.25, 0.25, 0.0,  0.25, 0.25, 0.0,  0.25, 0.25, 0.0,  
+    0.0, 0.25, -0.25,  0.0, 0.25, -0.25,  0.0, 0.25, -0.25,  0.0, 0.25, -0.25,  
+   -0.25,0.25, 0.0,  -0.25, 0.25, 0.0,  -0.25, 0.25, 0.0,  -0.25, 0.25, 0.0,  
+    0.0, 0.25, 0.0,  0.0, 0.25, 0.0,  0.0, 0.25, 0.0,   0.0, 0.25, 0.0,  
+    0.0, -0.25, 0.0,  0.0, -0.25, 0.0,  0.0, -0.25, 0.0,   0.0, -0.25, 0.0
+   ]);
+
+  initVertexBuffer(gl, vertices, colors, indices, normals)
+  return indices.length; // The number of vertices
+}
+
+function initVertexBufferBase(gl){
+
+  const vertices = new Float32Array([
+    -2.0, -0.50, 2.0,  2.0, -0.50, 2.0,  2.0, -0.50, -2.0,  -2.0, -0.50, -2.0 // square         
+   ]);
+
+  const colors = new Float32Array([
+     1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1.0
+   ]);
+
+  const indices = new Uint8Array([
+     0, 1, 2,  0, 2, 3
+   ]);
+
+  const normals = new Float32Array([
+    -2.0, -0.50, 2.0,  2.0, -0.50, 2.0,  2.0, -0.50, -2.0,  -2.0, -0.50, -2.0
+  ]);
+
+  initVertexBuffer(gl, vertices, colors, indices, normals)
+  return indices.length; // The number of vertices
+}
+
+// init vertex buffer with given vertices
+function initVertexBuffer(gl, vertices, colors, indices, normals) {
+
+  const n = indices.length; // The number of vertices
+
+  // Create a buffer object for indexes
+  var indexBuffer = gl.createBuffer();
+  if (!indexBuffer) {
+    console.log('Failed to create the buffer object');
+    return -1;
+  }
+  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
+  gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
+
+  // set array buffer for vertices
+  setArrayBuffer(gl, vertices, 'a_Position')
+
+  // set array buffer for color
+  setArrayBuffer(gl, colors, 'a_Color')
+
+  // set array buffer for normal
+  setArrayBuffer(gl, normals, 'a_Normal')
+
+  return n;
+}
+
+// set an array in the buffer of given attribute
+function setArrayBuffer(gl, array, attribute){
+
+  // Create a buffer object for vertices / colors
+  var vertexBuffer = gl.createBuffer();
+  if (!vertexBuffer) {
+    console.log('Failed to create the buffer object');
+    return -1;
+  }
+  gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
+  gl.bufferData(gl.ARRAY_BUFFER, array, gl.STATIC_DRAW);
+
+  // Set attributes and uniforms
+  var attribute = gl.getAttribLocation(gl.program, attribute);
+  if (attribute < 0) {
+    console.log('Failed to get the storage location of a_Position');
+    return -1;
+  }
+  gl.vertexAttribPointer(attribute, 3, gl.FLOAT, false, 0, 0);
+  gl.enableVertexAttribArray(attribute);
+}
+
+function check(gl, x, y, u_Clicked, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix) {
+  var picked = false;
+  gl.uniform1i(u_Clicked, 1);  // Pass true to u_Clicked
+  drawHourglass(gl, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix); // Draw cube with red
+  // Read pixel at the clicked position
+  var pixels = new Uint8Array(4); // Array for storing the pixel value
+  gl.readPixels(x, y, 1, 1, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
+
+  if (pixels[0] == 255) // The mouse in on cube if R(pixels[0]) is 255
+    picked = true;
 
-  // TODO: Complete with your code here
+  gl.uniform1i(u_Clicked, 0);  // Pass false to u_Clicked(rewrite the cube)
+  drawHourglass(gl, vpMatrix, u_MvpMatrix, u_ModelMatrix, u_NormalMatrix, modelMatrix); // Draw the cube
+  
+  return picked;
 }
\ No newline at end of file