diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..9d4b825ff35fe014e1eb310d1bbf47e0d286d331 Binary files /dev/null and b/.DS_Store differ diff --git a/lab1/.DS_Store b/lab1/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..8b3685fe58ee6892129fff4e700d3ea990b6857c Binary files /dev/null and b/lab1/.DS_Store differ diff --git a/lab1/src/lab1.js b/lab1/src/lab1.js index 0e4de785e52aa8644745b953809c06ed351c3d5f..b24e96d1d697a586bb14e5f83ca81ce53de0428f 100644 --- a/lab1/src/lab1.js +++ b/lab1/src/lab1.js @@ -1,21 +1,28 @@ // Vertex shader program -const VSHADER_SOURCE = - '\n' + - // TODO: Implement your vertex shader code here - '\n'; +var VSHADER_SOURCE = + 'attribute vec4 a_Position;\n' + + 'attribute vec4 a_Color;\n' + + 'varying vec4 v_Color;\n' + // varying variable + 'void main() {\n' + + ' gl_Position = a_Position;\n' + + ' gl_PointSize = 10.0;\n' + + ' v_Color = a_Color;\n' + // Pass the data to the fragment shader + '}\n'; // Fragment shader program -const FSHADER_SOURCE = - '\n' + - // TODO: Implement your fragment shader code here - '\n'; +var FSHADER_SOURCE = + 'precision mediump float;\n' + // Precision qualifier (See Chapter 6) + 'varying vec4 v_Color;\n' + // Receive the data from the vertex shader + 'void main() {\n' + + ' gl_FragColor = v_Color;\n' + + '}\n'; function main() { - // Retrieve <canvas> element - const canvas = document.getElementById('my-canvas'); + // Retrieve <canvas> elementa + var canvas = document.getElementById('my-canvas'); // Get the rendering context for WebGL - const gl = getWebGLContext(canvas); + var gl = getWebGLContext(canvas); if (!gl) { console.log('Failed to get the rendering context for WebGL'); return; @@ -27,37 +34,82 @@ function main() { return; } - // Write the positions of vertices to a vertex shader - const n = initVertexBuffers(gl); + // + var n = initVertexBuffers(gl); if (n < 0) { - console.log('Failed to set the positions of the vertices'); + console.log('Failed to set the vertex information'); return; } // Specify the color for clearing <canvas> - gl.clearColor(0, 0, 0, 1); + gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear <canvas> gl.clear(gl.COLOR_BUFFER_BIT); - // Draw the vertext buffer using triangles + // Draw three points gl.drawArrays(gl.TRIANGLES, 0, n); } function initVertexBuffers(gl) { - // This is the model - const vertices = new Float32Array([ - // TODO: Complete the vertex buffer with your model + var verticesColors = new Float32Array([ + + -0.6, -0.6, 1.0, 0.0, 0.0, //rouge + -0.3, 0.6, 1.0, 0.0, 0.0, + -0.6, 0.6, 1.0, 0.0, 0.0, + + -0.6, -0.6, 0.0, 1.0, 0.0, //vert + -0.3, 0.6, 0.0, 1.0, 0.0, + -0.3, -0.6,0.0, 1.0, 0.0, + + 0.4, -0.6, 1.0, 1.0, 0.0, //bleu + 0.7, 0.6, 1.0, 1.0, 0.0, + 0.4, 0.6, 1.0, 1.0, 0.0, + + 0.4, -0.6, 0.0, 0.0, 1.0, //jaune + 0.7, 0.6, 0.0, 0.0, 1.0, + 0.7, -0.6,0.0, 0.0, 1.0, + + -0.3, 0.1, 1.0, 0.5, 0.0, //orange + 0.4, 0.1, 1.0, 0.5, 0.0, + 0.4, -0.1, 1.0, 0.5, 0.0, + + -0.3, 0.1, 1.0, 0.0, 1.0, //magenta + -0.3, -0.1, 1.0, 0.0, 1.0, + 0.4, -0.1, 1.0, 0.0, 1.0, + ]); + var n = verticesColors.length/5; // The number of vertices + + // Create a buffer object + var vertexColorBuffer = gl.createBuffer(); + if (!vertexColorBuffer) { + console.log('Failed to create the buffer object'); + return false; + } + + // Write the vertex coordinates and colors to the buffer object + gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer); + gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW); + + var FSIZE = verticesColors.BYTES_PER_ELEMENT; + //Get the storage location of a_Position, assign and enable buffer + var a_Position = gl.getAttribLocation(gl.program, 'a_Position'); + if (a_Position < 0) { + console.log('Failed to get the storage location of a_Position'); + return -1; + } + gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, FSIZE * 5, 0); + gl.enableVertexAttribArray(a_Position); // Enable the assignment of the buffer object + + // Get the storage location of a_Position, assign buffer and enable + var a_Color = gl.getAttribLocation(gl.program, 'a_Color'); + if(a_Color < 0) { + console.log('Failed to get the storage location of a_Color'); + return -1; + } + gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 5, FSIZE * 2); + gl.enableVertexAttribArray(a_Color); // Enable the assignment of the buffer object - /* - TODO: - 1. Create a WebGL buffer object - 2. Bind the created buffer object - 3. Write data into the buffer object - 4. Bind shader programs attributes with javascript variables. - example: if you have an attribute named "a_color", you should - call "const varName = gl.getAttribLocation(gl.program, 'a_color');" - then "gl.vertexAttribPointer" and "gl.enableVertexAttribArray" - */ + return n; } diff --git a/lab2/.DS_Store b/lab2/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..e51086cab8a03e73b2efba0dbde4d5a5c3eabe66 Binary files /dev/null and b/lab2/.DS_Store differ diff --git a/lab2/lib/cuon-matrix.js b/lab2/lib/cuon-matrix.js new file mode 100644 index 0000000000000000000000000000000000000000..26585b7cb8ecf46e240822455d5afb60caf2f778 --- /dev/null +++ b/lab2/lib/cuon-matrix.js @@ -0,0 +1,741 @@ +// cuon-matrix.js (c) 2012 kanda and matsuda +/** + * This is a class treating 4x4 matrix. + * This class contains the function that is equivalent to OpenGL matrix stack. + * The matrix after conversion is calculated by multiplying a conversion matrix from the right. + * The matrix is replaced by the calculated result. + */ + +/** + * Constructor of Matrix4 + * If opt_src is specified, new matrix is initialized by opt_src. + * Otherwise, new matrix is initialized by identity matrix. + * @param opt_src source matrix(option) + */ +var Matrix4 = function(opt_src) { + var i, s, d; + if (opt_src && typeof opt_src === 'object' && opt_src.hasOwnProperty('elements')) { + s = opt_src.elements; + d = new Float32Array(16); + for (i = 0; i < 16; ++i) { + d[i] = s[i]; + } + this.elements = d; + } else { + this.elements = new Float32Array([1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]); + } +}; + +/** + * Set the identity matrix. + * @return this + */ +Matrix4.prototype.setIdentity = function() { + var e = this.elements; + e[0] = 1; e[4] = 0; e[8] = 0; e[12] = 0; + e[1] = 0; e[5] = 1; e[9] = 0; e[13] = 0; + e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + return this; +}; + +/** + * Copy matrix. + * @param src source matrix + * @return this + */ +Matrix4.prototype.set = function(src) { + var i, s, d; + + s = src.elements; + d = this.elements; + + if (s === d) { + return; + } + + for (i = 0; i < 16; ++i) { + d[i] = s[i]; + } + + return this; +}; + +/** + * Multiply the matrix from the right. + * @param other The multiply matrix + * @return this + */ +Matrix4.prototype.concat = function(other) { + var i, e, a, b, ai0, ai1, ai2, ai3; + + // Calculate e = a * b + e = this.elements; + a = this.elements; + b = other.elements; + + // If e equals b, copy b to temporary matrix. + if (e === b) { + b = new Float32Array(16); + for (i = 0; i < 16; ++i) { + b[i] = e[i]; + } + } + + for (i = 0; i < 4; i++) { + ai0=a[i]; ai1=a[i+4]; ai2=a[i+8]; ai3=a[i+12]; + e[i] = ai0 * b[0] + ai1 * b[1] + ai2 * b[2] + ai3 * b[3]; + e[i+4] = ai0 * b[4] + ai1 * b[5] + ai2 * b[6] + ai3 * b[7]; + e[i+8] = ai0 * b[8] + ai1 * b[9] + ai2 * b[10] + ai3 * b[11]; + e[i+12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15]; + } + + return this; +}; +Matrix4.prototype.multiply = Matrix4.prototype.concat; + +/** + * Multiply the three-dimensional vector. + * @param pos The multiply vector + * @return The result of multiplication(Float32Array) + */ +Matrix4.prototype.multiplyVector3 = function(pos) { + var e = this.elements; + var p = pos.elements; + var v = new Vector3(); + var result = v.elements; + + result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + e[12]; + result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + e[13]; + result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[14]; + + return v; +}; + +/** + * Multiply the four-dimensional vector. + * @param pos The multiply vector + * @return The result of multiplication(Float32Array) + */ +Matrix4.prototype.multiplyVector4 = function(pos) { + var e = this.elements; + var p = pos.elements; + var v = new Vector4(); + var result = v.elements; + + result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + p[3] * e[12]; + result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + p[3] * e[13]; + result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14]; + result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15]; + + return v; +}; + +/** + * Transpose the matrix. + * @return this + */ +Matrix4.prototype.transpose = function() { + var e, t; + + e = this.elements; + + t = e[ 1]; e[ 1] = e[ 4]; e[ 4] = t; + t = e[ 2]; e[ 2] = e[ 8]; e[ 8] = t; + t = e[ 3]; e[ 3] = e[12]; e[12] = t; + t = e[ 6]; e[ 6] = e[ 9]; e[ 9] = t; + t = e[ 7]; e[ 7] = e[13]; e[13] = t; + t = e[11]; e[11] = e[14]; e[14] = t; + + return this; +}; + +/** + * Calculate the inverse matrix of specified matrix, and set to this. + * @param other The source matrix + * @return this + */ +Matrix4.prototype.setInverseOf = function(other) { + var i, s, d, inv, det; + + s = other.elements; + d = this.elements; + inv = new Float32Array(16); + + inv[0] = s[5]*s[10]*s[15] - s[5] *s[11]*s[14] - s[9] *s[6]*s[15] + + s[9]*s[7] *s[14] + s[13]*s[6] *s[11] - s[13]*s[7]*s[10]; + inv[4] = - s[4]*s[10]*s[15] + s[4] *s[11]*s[14] + s[8] *s[6]*s[15] + - s[8]*s[7] *s[14] - s[12]*s[6] *s[11] + s[12]*s[7]*s[10]; + inv[8] = s[4]*s[9] *s[15] - s[4] *s[11]*s[13] - s[8] *s[5]*s[15] + + s[8]*s[7] *s[13] + s[12]*s[5] *s[11] - s[12]*s[7]*s[9]; + inv[12] = - s[4]*s[9] *s[14] + s[4] *s[10]*s[13] + s[8] *s[5]*s[14] + - s[8]*s[6] *s[13] - s[12]*s[5] *s[10] + s[12]*s[6]*s[9]; + + inv[1] = - s[1]*s[10]*s[15] + s[1] *s[11]*s[14] + s[9] *s[2]*s[15] + - s[9]*s[3] *s[14] - s[13]*s[2] *s[11] + s[13]*s[3]*s[10]; + inv[5] = s[0]*s[10]*s[15] - s[0] *s[11]*s[14] - s[8] *s[2]*s[15] + + s[8]*s[3] *s[14] + s[12]*s[2] *s[11] - s[12]*s[3]*s[10]; + inv[9] = - s[0]*s[9] *s[15] + s[0] *s[11]*s[13] + s[8] *s[1]*s[15] + - s[8]*s[3] *s[13] - s[12]*s[1] *s[11] + s[12]*s[3]*s[9]; + inv[13] = s[0]*s[9] *s[14] - s[0] *s[10]*s[13] - s[8] *s[1]*s[14] + + s[8]*s[2] *s[13] + s[12]*s[1] *s[10] - s[12]*s[2]*s[9]; + + inv[2] = s[1]*s[6]*s[15] - s[1] *s[7]*s[14] - s[5] *s[2]*s[15] + + s[5]*s[3]*s[14] + s[13]*s[2]*s[7] - s[13]*s[3]*s[6]; + inv[6] = - s[0]*s[6]*s[15] + s[0] *s[7]*s[14] + s[4] *s[2]*s[15] + - s[4]*s[3]*s[14] - s[12]*s[2]*s[7] + s[12]*s[3]*s[6]; + inv[10] = s[0]*s[5]*s[15] - s[0] *s[7]*s[13] - s[4] *s[1]*s[15] + + s[4]*s[3]*s[13] + s[12]*s[1]*s[7] - s[12]*s[3]*s[5]; + inv[14] = - s[0]*s[5]*s[14] + s[0] *s[6]*s[13] + s[4] *s[1]*s[14] + - s[4]*s[2]*s[13] - s[12]*s[1]*s[6] + s[12]*s[2]*s[5]; + + inv[3] = - s[1]*s[6]*s[11] + s[1]*s[7]*s[10] + s[5]*s[2]*s[11] + - s[5]*s[3]*s[10] - s[9]*s[2]*s[7] + s[9]*s[3]*s[6]; + inv[7] = s[0]*s[6]*s[11] - s[0]*s[7]*s[10] - s[4]*s[2]*s[11] + + s[4]*s[3]*s[10] + s[8]*s[2]*s[7] - s[8]*s[3]*s[6]; + inv[11] = - s[0]*s[5]*s[11] + s[0]*s[7]*s[9] + s[4]*s[1]*s[11] + - s[4]*s[3]*s[9] - s[8]*s[1]*s[7] + s[8]*s[3]*s[5]; + inv[15] = s[0]*s[5]*s[10] - s[0]*s[6]*s[9] - s[4]*s[1]*s[10] + + s[4]*s[2]*s[9] + s[8]*s[1]*s[6] - s[8]*s[2]*s[5]; + + det = s[0]*inv[0] + s[1]*inv[4] + s[2]*inv[8] + s[3]*inv[12]; + if (det === 0) { + return this; + } + + det = 1 / det; + for (i = 0; i < 16; i++) { + d[i] = inv[i] * det; + } + + return this; +}; + +/** + * Calculate the inverse matrix of this, and set to this. + * @return this + */ +Matrix4.prototype.invert = function() { + return this.setInverseOf(this); +}; + +/** + * Set the orthographic projection matrix. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @return this + */ +Matrix4.prototype.setOrtho = function(left, right, bottom, top, near, far) { + var e, rw, rh, rd; + + if (left === right || bottom === top || near === far) { + throw 'null frustum'; + } + + rw = 1 / (right - left); + rh = 1 / (top - bottom); + rd = 1 / (far - near); + + e = this.elements; + + e[0] = 2 * rw; + e[1] = 0; + e[2] = 0; + e[3] = 0; + + e[4] = 0; + e[5] = 2 * rh; + e[6] = 0; + e[7] = 0; + + e[8] = 0; + e[9] = 0; + e[10] = -2 * rd; + e[11] = 0; + + e[12] = -(right + left) * rw; + e[13] = -(top + bottom) * rh; + e[14] = -(far + near) * rd; + e[15] = 1; + + return this; +}; + +/** + * Multiply the orthographic projection matrix from the right. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @return this + */ +Matrix4.prototype.ortho = function(left, right, bottom, top, near, far) { + return this.concat(new Matrix4().setOrtho(left, right, bottom, top, near, far)); +}; + +/** + * Set the perspective projection matrix. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.setFrustum = function(left, right, bottom, top, near, far) { + var e, rw, rh, rd; + + if (left === right || top === bottom || near === far) { + throw 'null frustum'; + } + if (near <= 0) { + throw 'near <= 0'; + } + if (far <= 0) { + throw 'far <= 0'; + } + + rw = 1 / (right - left); + rh = 1 / (top - bottom); + rd = 1 / (far - near); + + e = this.elements; + + e[ 0] = 2 * near * rw; + e[ 1] = 0; + e[ 2] = 0; + e[ 3] = 0; + + e[ 4] = 0; + e[ 5] = 2 * near * rh; + e[ 6] = 0; + e[ 7] = 0; + + e[ 8] = (right + left) * rw; + e[ 9] = (top + bottom) * rh; + e[10] = -(far + near) * rd; + e[11] = -1; + + e[12] = 0; + e[13] = 0; + e[14] = -2 * near * far * rd; + e[15] = 0; + + return this; +}; + +/** + * Multiply the perspective projection matrix from the right. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.frustum = function(left, right, bottom, top, near, far) { + return this.concat(new Matrix4().setFrustum(left, right, bottom, top, near, far)); +}; + +/** + * Set the perspective projection matrix by fovy and aspect. + * @param fovy The angle between the upper and lower sides of the frustum. + * @param aspect The aspect ratio of the frustum. (width/height) + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.setPerspective = function(fovy, aspect, near, far) { + var e, rd, s, ct; + + if (near === far || aspect === 0) { + throw 'null frustum'; + } + if (near <= 0) { + throw 'near <= 0'; + } + if (far <= 0) { + throw 'far <= 0'; + } + + fovy = Math.PI * fovy / 180 / 2; + s = Math.sin(fovy); + if (s === 0) { + throw 'null frustum'; + } + + rd = 1 / (far - near); + ct = Math.cos(fovy) / s; + + e = this.elements; + + e[0] = ct / aspect; + e[1] = 0; + e[2] = 0; + e[3] = 0; + + e[4] = 0; + e[5] = ct; + e[6] = 0; + e[7] = 0; + + e[8] = 0; + e[9] = 0; + e[10] = -(far + near) * rd; + e[11] = -1; + + e[12] = 0; + e[13] = 0; + e[14] = -2 * near * far * rd; + e[15] = 0; + + return this; +}; + +/** + * Multiply the perspective projection matrix from the right. + * @param fovy The angle between the upper and lower sides of the frustum. + * @param aspect The aspect ratio of the frustum. (width/height) + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.perspective = function(fovy, aspect, near, far) { + return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far)); +}; + +/** + * Set the matrix for scaling. + * @param x The scale factor along the X axis + * @param y The scale factor along the Y axis + * @param z The scale factor along the Z axis + * @return this + */ +Matrix4.prototype.setScale = function(x, y, z) { + var e = this.elements; + e[0] = x; e[4] = 0; e[8] = 0; e[12] = 0; + e[1] = 0; e[5] = y; e[9] = 0; e[13] = 0; + e[2] = 0; e[6] = 0; e[10] = z; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + return this; +}; + +/** + * Multiply the matrix for scaling from the right. + * @param x The scale factor along the X axis + * @param y The scale factor along the Y axis + * @param z The scale factor along the Z axis + * @return this + */ +Matrix4.prototype.scale = function(x, y, z) { + var e = this.elements; + e[0] *= x; e[4] *= y; e[8] *= z; + e[1] *= x; e[5] *= y; e[9] *= z; + e[2] *= x; e[6] *= y; e[10] *= z; + e[3] *= x; e[7] *= y; e[11] *= z; + return this; +}; + +/** + * Set the matrix for translation. + * @param x The X value of a translation. + * @param y The Y value of a translation. + * @param z The Z value of a translation. + * @return this + */ +Matrix4.prototype.setTranslate = function(x, y, z) { + var e = this.elements; + e[0] = 1; e[4] = 0; e[8] = 0; e[12] = x; + e[1] = 0; e[5] = 1; e[9] = 0; e[13] = y; + e[2] = 0; e[6] = 0; e[10] = 1; e[14] = z; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + return this; +}; + +/** + * Multiply the matrix for translation from the right. + * @param x The X value of a translation. + * @param y The Y value of a translation. + * @param z The Z value of a translation. + * @return this + */ +Matrix4.prototype.translate = function(x, y, z) { + var e = this.elements; + e[12] += e[0] * x + e[4] * y + e[8] * z; + e[13] += e[1] * x + e[5] * y + e[9] * z; + e[14] += e[2] * x + e[6] * y + e[10] * z; + e[15] += e[3] * x + e[7] * y + e[11] * z; + return this; +}; + +/** + * Set the matrix for rotation. + * The vector of rotation axis may not be normalized. + * @param angle The angle of rotation (degrees) + * @param x The X coordinate of vector of rotation axis. + * @param y The Y coordinate of vector of rotation axis. + * @param z The Z coordinate of vector of rotation axis. + * @return this + */ +Matrix4.prototype.setRotate = function(angle, x, y, z) { + var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs; + + angle = Math.PI * angle / 180; + e = this.elements; + + s = Math.sin(angle); + c = Math.cos(angle); + + if (0 !== x && 0 === y && 0 === z) { + // Rotation around X axis + if (x < 0) { + s = -s; + } + e[0] = 1; e[4] = 0; e[ 8] = 0; e[12] = 0; + e[1] = 0; e[5] = c; e[ 9] =-s; e[13] = 0; + e[2] = 0; e[6] = s; e[10] = c; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + } else if (0 === x && 0 !== y && 0 === z) { + // Rotation around Y axis + if (y < 0) { + s = -s; + } + e[0] = c; e[4] = 0; e[ 8] = s; e[12] = 0; + e[1] = 0; e[5] = 1; e[ 9] = 0; e[13] = 0; + e[2] =-s; e[6] = 0; e[10] = c; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + } else if (0 === x && 0 === y && 0 !== z) { + // Rotation around Z axis + if (z < 0) { + s = -s; + } + e[0] = c; e[4] =-s; e[ 8] = 0; e[12] = 0; + e[1] = s; e[5] = c; e[ 9] = 0; e[13] = 0; + e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + } else { + // Rotation around another axis + len = Math.sqrt(x*x + y*y + z*z); + if (len !== 1) { + rlen = 1 / len; + x *= rlen; + y *= rlen; + z *= rlen; + } + nc = 1 - c; + xy = x * y; + yz = y * z; + zx = z * x; + xs = x * s; + ys = y * s; + zs = z * s; + + e[ 0] = x*x*nc + c; + e[ 1] = xy *nc + zs; + e[ 2] = zx *nc - ys; + e[ 3] = 0; + + e[ 4] = xy *nc - zs; + e[ 5] = y*y*nc + c; + e[ 6] = yz *nc + xs; + e[ 7] = 0; + + e[ 8] = zx *nc + ys; + e[ 9] = yz *nc - xs; + e[10] = z*z*nc + c; + e[11] = 0; + + e[12] = 0; + e[13] = 0; + e[14] = 0; + e[15] = 1; + } + + return this; +}; + +/** + * Multiply the matrix for rotation from the right. + * The vector of rotation axis may not be normalized. + * @param angle The angle of rotation (degrees) + * @param x The X coordinate of vector of rotation axis. + * @param y The Y coordinate of vector of rotation axis. + * @param z The Z coordinate of vector of rotation axis. + * @return this + */ +Matrix4.prototype.rotate = function(angle, x, y, z) { + return this.concat(new Matrix4().setRotate(angle, x, y, z)); +}; + +/** + * Set the viewing matrix. + * @param eyeX, eyeY, eyeZ The position of the eye point. + * @param centerX, centerY, centerZ The position of the reference point. + * @param upX, upY, upZ The direction of the up vector. + * @return this + */ +Matrix4.prototype.setLookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) { + var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz; + + fx = centerX - eyeX; + fy = centerY - eyeY; + fz = centerZ - eyeZ; + + // Normalize f. + rlf = 1 / Math.sqrt(fx*fx + fy*fy + fz*fz); + fx *= rlf; + fy *= rlf; + fz *= rlf; + + // Calculate cross product of f and up. + sx = fy * upZ - fz * upY; + sy = fz * upX - fx * upZ; + sz = fx * upY - fy * upX; + + // Normalize s. + rls = 1 / Math.sqrt(sx*sx + sy*sy + sz*sz); + sx *= rls; + sy *= rls; + sz *= rls; + + // Calculate cross product of s and f. + ux = sy * fz - sz * fy; + uy = sz * fx - sx * fz; + uz = sx * fy - sy * fx; + + // Set to this. + e = this.elements; + e[0] = sx; + e[1] = ux; + e[2] = -fx; + e[3] = 0; + + e[4] = sy; + e[5] = uy; + e[6] = -fy; + e[7] = 0; + + e[8] = sz; + e[9] = uz; + e[10] = -fz; + e[11] = 0; + + e[12] = 0; + e[13] = 0; + e[14] = 0; + e[15] = 1; + + // Translate. + return this.translate(-eyeX, -eyeY, -eyeZ); +}; + +/** + * Multiply the viewing matrix from the right. + * @param eyeX, eyeY, eyeZ The position of the eye point. + * @param centerX, centerY, centerZ The position of the reference point. + * @param upX, upY, upZ The direction of the up vector. + * @return this + */ +Matrix4.prototype.lookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) { + return this.concat(new Matrix4().setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)); +}; + +/** + * Multiply the matrix for project vertex to plane from the right. + * @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0". + * @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light. + * @return this + */ +Matrix4.prototype.dropShadow = function(plane, light) { + var mat = new Matrix4(); + var e = mat.elements; + + var dot = plane[0] * light[0] + plane[1] * light[1] + plane[2] * light[2] + plane[3] * light[3]; + + e[ 0] = dot - light[0] * plane[0]; + e[ 1] = - light[1] * plane[0]; + e[ 2] = - light[2] * plane[0]; + e[ 3] = - light[3] * plane[0]; + + e[ 4] = - light[0] * plane[1]; + e[ 5] = dot - light[1] * plane[1]; + e[ 6] = - light[2] * plane[1]; + e[ 7] = - light[3] * plane[1]; + + e[ 8] = - light[0] * plane[2]; + e[ 9] = - light[1] * plane[2]; + e[10] = dot - light[2] * plane[2]; + e[11] = - light[3] * plane[2]; + + e[12] = - light[0] * plane[3]; + e[13] = - light[1] * plane[3]; + e[14] = - light[2] * plane[3]; + e[15] = dot - light[3] * plane[3]; + + return this.concat(mat); +} + +/** + * Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.) + * @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.) + * @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane. + * @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.) + * @return this + */ +Matrix4.prototype.dropShadowDirectionally = function(normX, normY, normZ, planeX, planeY, planeZ, lightX, lightY, lightZ) { + var a = planeX * normX + planeY * normY + planeZ * normZ; + return this.dropShadow([normX, normY, normZ, -a], [lightX, lightY, lightZ, 0]); +}; + +/** + * Constructor of Vector3 + * If opt_src is specified, new vector is initialized by opt_src. + * @param opt_src source vector(option) + */ +var Vector3 = function(opt_src) { + var v = new Float32Array(3); + if (opt_src && typeof opt_src === 'object') { + v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; + } + this.elements = v; +} + +/** + * Normalize. + * @return this + */ +Vector3.prototype.normalize = function() { + var v = this.elements; + var c = v[0], d = v[1], e = v[2], g = Math.sqrt(c*c+d*d+e*e); + if(g){ + if(g == 1) + return this; + } else { + v[0] = 0; v[1] = 0; v[2] = 0; + return this; + } + g = 1/g; + v[0] = c*g; v[1] = d*g; v[2] = e*g; + return this; +}; + +/** + * Constructor of Vector4 + * If opt_src is specified, new vector is initialized by opt_src. + * @param opt_src source vector(option) + */ +var Vector4 = function(opt_src) { + var v = new Float32Array(4); + if (opt_src && typeof opt_src === 'object') { + v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; v[3] = opt_src[3]; + } + this.elements = v; +} diff --git a/lab2/src/.DS_Store b/lab2/src/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..19df12e858ef6fc6f881cbe7a06e029c667b2854 Binary files /dev/null and b/lab2/src/.DS_Store differ diff --git a/lab2/src/lab2.html b/lab2/src/lab2.html index 723e90ec97ccc9137dd517f7550becf53a698524..d24a2194cc6b17124b75ba637a2644fc9f34bc9e 100644 --- a/lab2/src/lab2.html +++ b/lab2/src/lab2.html @@ -5,12 +5,17 @@ <title>Simple model</title> </head> <body onload="main()"> + -Utilisez la souris pour faire tourner la camera<br> + -Utiliser les flèches pour déplacer la camera (haut, bas , gauche, droite)<br> + -Utilisez Entrer/Esc pour controler le zoom (+ ou -)<br> <canvas width="400" height="600" id="my-canvas"> - Please use a browser that supports "canvas" + Please use a browser that supports "canvas" \n + </canvas> <script src="../lib/webgl-utils.js"></script> <script src="../lib/webgl-debug.js"></script> <script src="../lib/cuon-utils.js"></script> +<script src="../lib/cuon-matrix.js"></script> <script src="lab2.js"></script> </body> </html> \ No newline at end of file diff --git a/lab2/src/lab2.js b/lab2/src/lab2.js index 105a227db9e7e4d4abde40b5002e7c75eb860fb4..2d9fe3cf839ebc0d177150e680292254d9ce89d2 100644 --- a/lab2/src/lab2.js +++ b/lab2/src/lab2.js @@ -1,18 +1,227 @@ + // Vertex shader program -const VSHADER_SOURCE = - '\n' + - // TODO: Implement your vertex shader code here - '\n'; +var VSHADER_SOURCE = + 'attribute vec4 a_Position;\n' + + 'attribute vec4 a_Color;\n' + + 'uniform mat4 u_MvpMatrix;\n' + + 'varying vec4 v_Color;\n' + + 'void main() {\n' + + ' gl_Position = u_MvpMatrix * a_Position;\n' + + ' v_Color = a_Color;\n' + + '}\n'; // Fragment shader program -const FSHADER_SOURCE = - '\n' + - // TODO: Implement your fragment shader code here - '\n'; +var FSHADER_SOURCE = + '#ifdef GL_ES\n' + + 'precision mediump float;\n' + + '#endif\n' + + 'varying vec4 v_Color;\n' + + 'void main() {\n' + + ' gl_FragColor = v_Color;\n' + + '}\n'; -function main() { // Retrieve <canvas> element - const canvas = document.getElementById('my-canvas'); +var canvas = document.getElementById('my-canvas'); +function main() { + draw(3,3,12,0,0); + //activer les "event listener "nécessaires pour visualiser le sablier + //souris, flèches, touches (Entrer,Esc) + controler() + +} + +function normaliser(val){ + return -15 + ((val*30) /canvas.height); +} +function draw(x,y,z,up,left) +{ + // Get the rendering context for WebGL + var gl = getWebGLContext(canvas); + if (!gl) { + console.log('Failed to get the rendering context for WebGL'); + return; + } + + // Initialize shaders + if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) { + console.log('Failed to intialize shaders.'); + return; + } + + // Set the vertex information + var n = initVertexBuffers(gl); + if (n < 0) { + console.log('Failed to set the vertex information'); + return; + } + + var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix'); + if (!u_MvpMatrix) { + console.log('Failed to get the storage location of u_MvpMatrix'); + return; + } + + gl.clearColor(0.0, 0.0, 0.0, 1.0); + gl.enable(gl.DEPTH_TEST); + var rotateMatrix = new Matrix4(); + var viewMatrix = new Matrix4(); + var projMatrix = new Matrix4(); + var tranMatrix = new Matrix4(); + var mvpMatrix = new Matrix4(); + var inverseMatrix = new Matrix4(); + + gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements); + mvpMatrix.setPerspective(30, 1, 1, 100); + mvpMatrix.lookAt(-x, -y, -z, left, up, 1, 0, 1, 0); + gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements); + gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); + gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0); + rotateMatrix.setRotate(180,1,0,0); + tranMatrix.setTranslate(0, 0.4, 0.5); + viewMatrix.lookAt(-x, -y, -z, left, up, 1, 0, 1, 0); + projMatrix.setPerspective(30, 1, 1, 100); + inverseMatrix.setInverseOf(rotateMatrix); + mvpMatrix.set(projMatrix).multiply(viewMatrix).multiply(tranMatrix).multiply(rotateMatrix); + gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements); + gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0); +} + +function radToDeg(r) { + return r * 180 / Math.PI; +} + +function degToRad(d) { + return d * Math.PI / 180; +} + +function initVertexBuffers(gl) { + + var vertices = new Float32Array([ // Vertex + 0.5, 0.2, 0.5, 0, 0.2, 0.5, -0.5,-1.0, 1.0, 1,-1.0, 1.0, + 0.5, 0.2, 0.5, 1.0,-1.0, 1.0, 1.0,-1.0,-0.5, 0.5, 0.2,0, + 0.5, 0.2, 0.5, 0.5, 0.2,0, 0, 0.2,0, 0, 0.2, 0.5, + 0.0, 0.2, 0.5, 0.0, 0.2,0, -0.5,-1.0,-0.5, -0.5,-1.0, 1.0, + -0.5,-1.0,-0.5, 1.0,-1.0,-0.5, 1.0,-1.0, 1.0, -0.5,-1.0, 1.0, + 1.0,-1.0,-0.5, -0.5,-1.0,-0.5, 0, 0.2,0, 0.5, 0.2,0 + ]); + + var colors = new Float32Array([ // Couleurs + 0.4, 0.4, 1.0, 0.4, 0.4, 1.0, 0.4, 0.4, 1.0, 0.4, 0.4, 1.0, + 0.4, 1.0, 0.4, 0.4, 1.0, 0.4, 0.4, 1.0, 0.4, 0.4, 1.0, 0.4, + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, + 1.0, 1.0, 0.4, 1.0, 1.0, 0.4, 1.0, 1.0, 0.4, 1.0, 1.0, 0.4, + 1.0, 0.4, 0.4, 1.0, 0.4, 0.4, 1.0, 0.4, 0.4, 1.0, 0.4, 0.4, + 0.4, 1.0, 1.0, 0.4, 1.0, 1.0, 0.4, 1.0, 1.0, 0.4, 1.0, 1.0 + ]); + + var indices = new Uint8Array([ // Indices + 0, 1, 2, 0, 2, 3, + 4, 5, 6, 4, 6, 7, + 8, 9,10, 8,10,11, + 12,13,14, 12,14,15, + 16,17,18, 16,18,19, + 20,21,22, 20,22,23 + ]); + + + // Create a buffer object + var indexBuffer = gl.createBuffer(); + if (!indexBuffer) + return -1; + + // Write the vertex coordinates and color to the buffer object + if (!initArrayBuffer(gl, vertices, 3, gl.FLOAT, 'a_Position')) + return -1; + + if (!initArrayBuffer(gl, colors, 3, gl.FLOAT, 'a_Color')) + return -1; + + + // Write the indices to the buffer object + gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer); + gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW); + + return indices.length; +} + +function initArrayBuffer(gl, data, num, type, attribute) { + var buffer = gl.createBuffer(); // Create a buffer object + if (!buffer) { + console.log('Failed to create the buffer object'); + return false; + } + // Write date into the buffer object + gl.bindBuffer(gl.ARRAY_BUFFER, buffer); + gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW); + // Assign the buffer object to the attribute variable + var a_attribute = gl.getAttribLocation(gl.program, attribute); + if (a_attribute < 0) { + console.log('Failed to get the storage location of ' + attribute); + return false; + } + gl.vertexAttribPointer(a_attribute, num, type, false, 0, 0); + // Enable the assignment of the buffer object to the attribute variable + gl.enableVertexAttribArray(a_attribute); + + return true; +} +function controler(){ + var distance=15; + var up=0.0; + var left=0; + let clicked=false; + canvas.addEventListener('mousedown', event =>clicked=true); + canvas.addEventListener('mouseup', event =>clicked=false); + canvas.addEventListener('mousemove', event => + { + bound = canvas.getBoundingClientRect(); + x = event.clientX - bound.left - canvas.clientLeft; + y = event.clientY - bound.top - canvas.clientTop + if (clicked===true) + { + draw(distance * Math.sin(normaliser(x/4)),normaliser(y),distance * Math.cos(normaliser(x/4)),up,left); + } + + }); + + window.addEventListener('keydown', function (event) { + if (event.defaultPrevented) { + return; + } + + switch (event.key) { + case 'ArrowDown': + up-=0.5; + console.log(up,left); + draw(distance * Math.sin(normaliser(x/4)),normaliser(y),distance * Math.cos(normaliser(x/4)),up,left); + break; + case 'ArrowUp': + draw(distance * Math.sin(normaliser(x/4)),normaliser(y),distance * Math.cos(normaliser(x/4)),up,left); + up+=0.5; + break; + case 'ArrowLeft': + console.log("test"); + left++; + console.log(up,left); + draw(distance * Math.sin(normaliser(x/4)),normaliser(y),distance * Math.cos(normaliser(x/4)),up,left); + break; + case "ArrowRight": + left--; + console.log(up,left); + draw(distance * Math.sin(normaliser(x/4)),normaliser(y),distance * Math.cos(normaliser(x/4)),up,left); + break; + case 'Enter': + distance--; + draw(distance * Math.sin(normaliser(x/4)),normaliser(y),distance * Math.cos(normaliser(x/4)),up,left); + break; + case "Escape": + distance++; + draw(distance * Math.sin(normaliser(x/4)),normaliser(y),distance * Math.cos(normaliser(x/4)),up,left); + break; + default: + return; + } - // TODO: Complete with your code here -} \ No newline at end of file + event.preventDefault(); + }, true); +}