diff --git a/fractal_project/README.md b/fractal_project/README.md
index 2e44796c088bb2bf3d1ff7c1f8dc3c16d266d086..fba577fbece36dca87a7eabb7a06c187db0864b3 100644
--- a/fractal_project/README.md
+++ b/fractal_project/README.md
@@ -1,3 +1,29 @@
+# Mandelbrot set
+
+## What is the Mandelbrot set?
+
+## Calculation of the Mandelbrot set
+
+The **Mandelbrot set** is the set of **complex numbers** $c$ for which the function $f_{c}(z) = z^{2} + c$ does **not** diverge when iterated from $z_{0} = 0$. This means that starting with $z = 0$, if the iterations of the function $f_{c}(z) = z^{2} + c$ do not cause $\left\lvert z \right\rvert$ to grow beyond a certain threshold (usually $2$) after many iterations, then the point $c$ is part of the Mandelbrot set.
+
+### 1. Choose a complex constant $c$
+
+> * Fot the Mandelbrot set, $c$ **is the parameter** that changes with each point we check in the complex plane. The set is defined by **which value of $c$ produce bounded iterates**.
+
+### 2. Define the complex plane
+
+### 3. Start with $z_{0} = 0$
+
+### 4. Iterate the function $f_{c}(z) = z^{2} + c$
+
+### 5. Check if $\left\lvert z \right\rvert$ (the modulus of $z$) escapes
+
+### 6. Repeat the iteration for a maximum number of iterations
+
+### 7. Color the point
+
+### 8. Repeat for all points in the complex plane
+
 # Julia set
 
 ## What is a Julia set?
@@ -36,7 +62,7 @@ Where:
 > * **Second iteration**: Now use $z_{1} = ... + ... \imath$ and apply the same function.
 > * **Finally**, you repeat this process for several iterations.
 
-### 5. Check if $\left\lvert z \right\rvert$ (the module of $z$) escapes
+### 5. Check if $\left\lvert z \right\rvert$ (the modulus of $z$) escapes
 
 > * **Escape condition**: If at any point during the iterations $\left\lvert z_{n} \right\rvert$ (the magnitude of $z_{n}$) exceeds a threshold (commonly $2$), we say the point $z$ escapes and is **not** in the Julia set we stop iterating.