From 21dca3cb9c30d6eed5a5925e561cb6ca934e5289 Mon Sep 17 00:00:00 2001
From: iliya <iliya.saroukha@hes-so.ch>
Date: Wed, 1 Nov 2023 22:43:46 +0100
Subject: [PATCH] feat: drawing evaluation point on taylor polynomial

---
 serie_taylor/revision_part_b.py | 36 +++++++++++++++++++--------------
 1 file changed, 21 insertions(+), 15 deletions(-)

diff --git a/serie_taylor/revision_part_b.py b/serie_taylor/revision_part_b.py
index 8e494d4..cd4123a 100644
--- a/serie_taylor/revision_part_b.py
+++ b/serie_taylor/revision_part_b.py
@@ -33,18 +33,24 @@ def T(x: float, a: float) -> float:
 
 
 if __name__ == "__main__":
-    eval_point = 2
-    x_axis = np.arange(-5, 9, 0.1)
-
-    print(f"Zéros de la fonction f = {iter_bisection(4, 8, f, True)}")
-
-    # plt.figure(figsize=(8, 6))
-    # plt.plot(x_axis, f(x_axis), label='f(x) = sin(x) + exp(-x) / 10')
-    # plt.plot(x_axis, T(x_axis, eval_point),
-    #          label='Polynôme de Taylor de degré 5')
-    # plt.legend()
-    # plt.xlabel('x')
-    # plt.ylabel('y')
-    # plt.title('Polynôme de Taylor de degré 5 pour f(x)')
-    # plt.grid(True)
-    # plt.show()
+    x_eval_point = 2
+    start = -5
+    stop = 9
+    x_axis = np.arange(start, stop, 0.01)
+    y_eval_point = f(x_eval_point)
+
+    print(f"Zéros de la fonction f = {iter_bisection(-4, -2, f, True)}")
+
+    plt.figure(figsize=(8, 6))
+    plt.xlim(start, stop)
+    plt.ylim(-5, 5)
+    plt.plot(x_axis, f(x_axis), label='f(x) = sin(x) + exp(-x) / 10')
+    plt.plot(x_axis, T(x_axis, x_eval_point),
+             label='Polynôme de Taylor de degré 5')
+    plt.plot(x_eval_point, y_eval_point, marker="o", markerfacecolor="purple")
+    plt.legend()
+    plt.xlabel('x')
+    plt.ylabel('y')
+    plt.title('Polynôme de Taylor de degré 5 pour f(x)')
+    plt.grid(True)
+    plt.show()
-- 
GitLab