diff --git a/ISC_421_Controle_4_Saroukhanian_Iliya.py b/ISC_421_Controle_4_Saroukhanian_Iliya.py
index a001bbe8b8aaa1c40cfcee26026323af098487ed..ed058c4884e0d0deb0373233601374f03b8d7d51 100644
--- a/ISC_421_Controle_4_Saroukhanian_Iliya.py
+++ b/ISC_421_Controle_4_Saroukhanian_Iliya.py
@@ -139,8 +139,6 @@ print()
 print(f"valeur de la fonction en x = {SD.Taylor_points} : {
       [SD.f(x) for x in SD.Taylor_points]}")
 print(f"valeur de la fonction en a et b:  {SD.f(SD.a), SD.f(SD.b)}")
-# print("===============================")
-# print(SD.Maximal_derivatives_values)
 
 # Exemple de graphe de la fonction f.
 # t = np.linspace(SD.a, SD.b, Nmbre_pts)
@@ -328,78 +326,6 @@ def plot_errmax_interpolation():
     plt.show()
 
 
-# def caca():
-#     print(len(SD.Maximal_derivatives_values))
-
-
-# ex2_taylor_poly()
-# plot_taylor_poly()
+plot_taylor_poly()
 plot_lagrange_poly()
-# plot_errmax_interpolation()
-
-
-# def ex3_newton_interpolation_poly():
-#     # merce l'ami
-#     def divided_differences(x, y):
-#         n = len(y)
-#         coef = np.zeros([n, n])
-#         coef[:, 0] = y
-#
-#         for j in range(1, n):
-#             for i in range(n - j):
-#                 coef[i, j] = (coef[i + 1, j - 1] - coef[i, j - 1]) / \
-#                     (x[i + j] - x[i])
-#
-#         return coef[0, :]
-#
-#     def newton_polynomial(x, x_points, coef):
-#         n = len(coef)
-#         p = coef[n - 1]
-#         for k in range(1, n):
-#             p = coef[n - k - 1] + (x - x_points[n - k - 1]) * p
-#
-#         return p
-#
-#     nb_points = np.linspace(3, 19, 6, dtype=np.uint64)
-#     fig, axes = plt.subplots(2, 3, figsize=(20, 12))
-#
-#     t = np.linspace(SD.a, SD.b, Nmbre_pts)
-#
-#     for i, ax in enumerate(axes.flat):
-#         chebyshev_points = np.cos(
-#             (2 * np.arange(nb_points[i]) + 1) / (2 * nb_points[i]) * np.pi)
-#
-#         chebyshev_points_mapped = 0.5 * \
-#             (SD.b - SD.a) * (chebyshev_points + 1) + SD.a
-#
-#         interpolate_pts = np.linspace(SD.a, SD.b, nb_points[i])
-#
-#         y_points_uni = SD.f(interpolate_pts)
-#
-#         coef_uni = divided_differences(interpolate_pts, y_points_uni)
-#         y_plot_uni = newton_polynomial(t, interpolate_pts, coef_uni)
-#
-#         y_points_cheb = SD.f(chebyshev_points_mapped)
-#
-#         coef_cheb = divided_differences(chebyshev_points_mapped, y_points_cheb)
-#         y_plot_cheb = newton_polynomial(t, chebyshev_points_mapped, coef_cheb)
-#
-#         ax.plot(t, SD.f(t), color='black', label='f')
-#         ax.plot(t, y_plot_uni, color='red',
-#                 label='$N_{f}$, intervalle équidistants')
-#         ax.plot(t, y_plot_cheb, color='blue',
-#                 label='$N_{f}$, points de Chebyshev')
-#         ax.plot(interpolate_pts, SD.f(interpolate_pts), 'o', color='red',
-#                 label='Points équidistants')
-#         ax.plot(chebyshev_points_mapped[::-1],
-#                 SD.f(chebyshev_points_mapped[::-1]), 'o', color='blue',
-#                 label='Points de Chebyshev')
-#         ax.set_title(f'n = {nb_points[i]}')
-#         ax.set_ylim([-1.2, 1.2])
-#
-#         ax.legend()
-#
-#     fig.suptitle(f'Polynôme d\'interpolation de Newton de $f$ avec 2 subdivisions différentes d\'intervalle: Équidistantes (rouge) / Points de Chebyshev (bleu)')
-#
-#     fig.tight_layout()
-#     plt.show()
+plot_errmax_interpolation()