diff --git a/lab4/lib/cuon-matrix.js b/lab4/lib/cuon-matrix.js
new file mode 100755
index 0000000000000000000000000000000000000000..c1187280d6a920c8d798dd50c0060bb26c442338
--- /dev/null
+++ b/lab4/lib/cuon-matrix.js
@@ -0,0 +1,742 @@
+// cuon-matrix.js (c) 2012 kanda and matsuda
+/** 
+ * This is a class treating 4x4 matrix.
+ * This class contains the function that is equivalent to OpenGL matrix stack.
+ * The matrix after conversion is calculated by multiplying a conversion matrix from the right.
+ * The matrix is replaced by the calculated result.
+ */
+
+/**
+ * Constructor of Matrix4
+ * If opt_src is specified, new matrix is initialized by opt_src.
+ * Otherwise, new matrix is initialized by identity matrix.
+ * @param opt_src source matrix(option)
+ */
+var Matrix4 = function(opt_src) {
+    var i, s, d;
+    if (opt_src && typeof opt_src === 'object' && opt_src.hasOwnProperty('elements')) {
+      s = opt_src.elements;
+      d = new Float32Array(16);
+      for (i = 0; i < 16; ++i) {
+        d[i] = s[i];
+      }
+      this.elements = d;
+    } else {
+      this.elements = new Float32Array([1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]);
+    }
+  };
+  
+  /**
+   * Set the identity matrix.
+   * @return this
+   */
+  Matrix4.prototype.setIdentity = function() {
+    var e = this.elements;
+    e[0] = 1;   e[4] = 0;   e[8]  = 0;   e[12] = 0;
+    e[1] = 0;   e[5] = 1;   e[9]  = 0;   e[13] = 0;
+    e[2] = 0;   e[6] = 0;   e[10] = 1;   e[14] = 0;
+    e[3] = 0;   e[7] = 0;   e[11] = 0;   e[15] = 1;
+    return this;
+  };
+  
+  /**
+   * Copy matrix.
+   * @param src source matrix
+   * @return this
+   */
+  Matrix4.prototype.set = function(src) {
+    var i, s, d;
+  
+    s = src.elements;
+    d = this.elements;
+  
+    if (s === d) {
+      return;
+    }
+      
+    for (i = 0; i < 16; ++i) {
+      d[i] = s[i];
+    }
+  
+    return this;
+  };
+  
+  /**
+   * Multiply the matrix from the right.
+   * @param other The multiply matrix
+   * @return this
+   */
+  Matrix4.prototype.concat = function(other) {
+    var i, e, a, b, ai0, ai1, ai2, ai3;
+    
+    // Calculate e = a * b
+    e = this.elements;
+    a = this.elements;
+    b = other.elements;
+    
+    // If e equals b, copy b to temporary matrix.
+    if (e === b) {
+      b = new Float32Array(16);
+      for (i = 0; i < 16; ++i) {
+        b[i] = e[i];
+      }
+    }
+    
+    for (i = 0; i < 4; i++) {
+      ai0=a[i];  ai1=a[i+4];  ai2=a[i+8];  ai3=a[i+12];
+      e[i]    = ai0 * b[0]  + ai1 * b[1]  + ai2 * b[2]  + ai3 * b[3];
+      e[i+4]  = ai0 * b[4]  + ai1 * b[5]  + ai2 * b[6]  + ai3 * b[7];
+      e[i+8]  = ai0 * b[8]  + ai1 * b[9]  + ai2 * b[10] + ai3 * b[11];
+      e[i+12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15];
+    }
+    
+    return this;
+  };
+  Matrix4.prototype.multiply = Matrix4.prototype.concat;
+  
+  /**
+   * Multiply the three-dimensional vector.
+   * @param pos  The multiply vector
+   * @return The result of multiplication(Float32Array)
+   */
+  Matrix4.prototype.multiplyVector3 = function(pos) {
+    var e = this.elements;
+    var p = pos.elements;
+    var v = new Vector3();
+    var result = v.elements;
+  
+    result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + e[12];
+    result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + e[13];
+    result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[14];
+  
+    return v;
+  };
+  
+  /**
+   * Multiply the four-dimensional vector.
+   * @param pos  The multiply vector
+   * @return The result of multiplication(Float32Array)
+   */
+  Matrix4.prototype.multiplyVector4 = function(pos) {
+    var e = this.elements;
+    var p = pos.elements;
+    var v = new Vector4();
+    var result = v.elements;
+  
+    result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + p[3] * e[12];
+    result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + p[3] * e[13];
+    result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14];
+    result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15];
+  
+    return v;
+  };
+  
+  /**
+   * Transpose the matrix.
+   * @return this
+   */
+  Matrix4.prototype.transpose = function() {
+    var e, t;
+  
+    e = this.elements;
+  
+    t = e[ 1];  e[ 1] = e[ 4];  e[ 4] = t;
+    t = e[ 2];  e[ 2] = e[ 8];  e[ 8] = t;
+    t = e[ 3];  e[ 3] = e[12];  e[12] = t;
+    t = e[ 6];  e[ 6] = e[ 9];  e[ 9] = t;
+    t = e[ 7];  e[ 7] = e[13];  e[13] = t;
+    t = e[11];  e[11] = e[14];  e[14] = t;
+  
+    return this;
+  };
+  
+  /**
+   * Calculate the inverse matrix of specified matrix, and set to this.
+   * @param other The source matrix
+   * @return this
+   */
+  Matrix4.prototype.setInverseOf = function(other) {
+    var i, s, d, inv, det;
+  
+    s = other.elements;
+    d = this.elements;
+    inv = new Float32Array(16);
+  
+    inv[0]  =   s[5]*s[10]*s[15] - s[5] *s[11]*s[14] - s[9] *s[6]*s[15]
+              + s[9]*s[7] *s[14] + s[13]*s[6] *s[11] - s[13]*s[7]*s[10];
+    inv[4]  = - s[4]*s[10]*s[15] + s[4] *s[11]*s[14] + s[8] *s[6]*s[15]
+              - s[8]*s[7] *s[14] - s[12]*s[6] *s[11] + s[12]*s[7]*s[10];
+    inv[8]  =   s[4]*s[9] *s[15] - s[4] *s[11]*s[13] - s[8] *s[5]*s[15]
+              + s[8]*s[7] *s[13] + s[12]*s[5] *s[11] - s[12]*s[7]*s[9];
+    inv[12] = - s[4]*s[9] *s[14] + s[4] *s[10]*s[13] + s[8] *s[5]*s[14]
+              - s[8]*s[6] *s[13] - s[12]*s[5] *s[10] + s[12]*s[6]*s[9];
+  
+    inv[1]  = - s[1]*s[10]*s[15] + s[1] *s[11]*s[14] + s[9] *s[2]*s[15]
+              - s[9]*s[3] *s[14] - s[13]*s[2] *s[11] + s[13]*s[3]*s[10];
+    inv[5]  =   s[0]*s[10]*s[15] - s[0] *s[11]*s[14] - s[8] *s[2]*s[15]
+              + s[8]*s[3] *s[14] + s[12]*s[2] *s[11] - s[12]*s[3]*s[10];
+    inv[9]  = - s[0]*s[9] *s[15] + s[0] *s[11]*s[13] + s[8] *s[1]*s[15]
+              - s[8]*s[3] *s[13] - s[12]*s[1] *s[11] + s[12]*s[3]*s[9];
+    inv[13] =   s[0]*s[9] *s[14] - s[0] *s[10]*s[13] - s[8] *s[1]*s[14]
+              + s[8]*s[2] *s[13] + s[12]*s[1] *s[10] - s[12]*s[2]*s[9];
+  
+    inv[2]  =   s[1]*s[6]*s[15] - s[1] *s[7]*s[14] - s[5] *s[2]*s[15]
+              + s[5]*s[3]*s[14] + s[13]*s[2]*s[7]  - s[13]*s[3]*s[6];
+    inv[6]  = - s[0]*s[6]*s[15] + s[0] *s[7]*s[14] + s[4] *s[2]*s[15]
+              - s[4]*s[3]*s[14] - s[12]*s[2]*s[7]  + s[12]*s[3]*s[6];
+    inv[10] =   s[0]*s[5]*s[15] - s[0] *s[7]*s[13] - s[4] *s[1]*s[15]
+              + s[4]*s[3]*s[13] + s[12]*s[1]*s[7]  - s[12]*s[3]*s[5];
+    inv[14] = - s[0]*s[5]*s[14] + s[0] *s[6]*s[13] + s[4] *s[1]*s[14]
+              - s[4]*s[2]*s[13] - s[12]*s[1]*s[6]  + s[12]*s[2]*s[5];
+  
+    inv[3]  = - s[1]*s[6]*s[11] + s[1]*s[7]*s[10] + s[5]*s[2]*s[11]
+              - s[5]*s[3]*s[10] - s[9]*s[2]*s[7]  + s[9]*s[3]*s[6];
+    inv[7]  =   s[0]*s[6]*s[11] - s[0]*s[7]*s[10] - s[4]*s[2]*s[11]
+              + s[4]*s[3]*s[10] + s[8]*s[2]*s[7]  - s[8]*s[3]*s[6];
+    inv[11] = - s[0]*s[5]*s[11] + s[0]*s[7]*s[9]  + s[4]*s[1]*s[11]
+              - s[4]*s[3]*s[9]  - s[8]*s[1]*s[7]  + s[8]*s[3]*s[5];
+    inv[15] =   s[0]*s[5]*s[10] - s[0]*s[6]*s[9]  - s[4]*s[1]*s[10]
+              + s[4]*s[2]*s[9]  + s[8]*s[1]*s[6]  - s[8]*s[2]*s[5];
+  
+    det = s[0]*inv[0] + s[1]*inv[4] + s[2]*inv[8] + s[3]*inv[12];
+    if (det === 0) {
+      return this;
+    }
+  
+    det = 1 / det;
+    for (i = 0; i < 16; i++) {
+      d[i] = inv[i] * det;
+    }
+  
+    return this;
+  };
+  
+  /**
+   * Calculate the inverse matrix of this, and set to this.
+   * @return this
+   */
+  Matrix4.prototype.invert = function() {
+    return this.setInverseOf(this);
+  };
+  
+  /**
+   * Set the orthographic projection matrix.
+   * @param left The coordinate of the left of clipping plane.
+   * @param right The coordinate of the right of clipping plane.
+   * @param bottom The coordinate of the bottom of clipping plane.
+   * @param top The coordinate of the top top clipping plane.
+   * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
+   * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
+   * @return this
+   */
+  Matrix4.prototype.setOrtho = function(left, right, bottom, top, near, far) {
+    var e, rw, rh, rd;
+  
+    if (left === right || bottom === top || near === far) {
+      throw 'null frustum';
+    }
+  
+    rw = 1 / (right - left);
+    rh = 1 / (top - bottom);
+    rd = 1 / (far - near);
+  
+    e = this.elements;
+  
+    e[0]  = 2 * rw;
+    e[1]  = 0;
+    e[2]  = 0;
+    e[3]  = 0;
+  
+    e[4]  = 0;
+    e[5]  = 2 * rh;
+    e[6]  = 0;
+    e[7]  = 0;
+  
+    e[8]  = 0;
+    e[9]  = 0;
+    e[10] = -2 * rd;
+    e[11] = 0;
+  
+    e[12] = -(right + left) * rw;
+    e[13] = -(top + bottom) * rh;
+    e[14] = -(far + near) * rd;
+    e[15] = 1;
+  
+    return this;
+  };
+  
+  /**
+   * Multiply the orthographic projection matrix from the right.
+   * @param left The coordinate of the left of clipping plane.
+   * @param right The coordinate of the right of clipping plane.
+   * @param bottom The coordinate of the bottom of clipping plane.
+   * @param top The coordinate of the top top clipping plane.
+   * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
+   * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
+   * @return this
+   */
+  Matrix4.prototype.ortho = function(left, right, bottom, top, near, far) {
+    return this.concat(new Matrix4().setOrtho(left, right, bottom, top, near, far));
+  };
+  
+  /**
+   * Set the perspective projection matrix.
+   * @param left The coordinate of the left of clipping plane.
+   * @param right The coordinate of the right of clipping plane.
+   * @param bottom The coordinate of the bottom of clipping plane.
+   * @param top The coordinate of the top top clipping plane.
+   * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+   * @param far The distances to the farther depth clipping plane. This value must be plus value.
+   * @return this
+   */
+  Matrix4.prototype.setFrustum = function(left, right, bottom, top, near, far) {
+    var e, rw, rh, rd;
+  
+    if (left === right || top === bottom || near === far) {
+      throw 'null frustum';
+    }
+    if (near <= 0) {
+      throw 'near <= 0';
+    }
+    if (far <= 0) {
+      throw 'far <= 0';
+    }
+  
+    rw = 1 / (right - left);
+    rh = 1 / (top - bottom);
+    rd = 1 / (far - near);
+  
+    e = this.elements;
+  
+    e[ 0] = 2 * near * rw;
+    e[ 1] = 0;
+    e[ 2] = 0;
+    e[ 3] = 0;
+  
+    e[ 4] = 0;
+    e[ 5] = 2 * near * rh;
+    e[ 6] = 0;
+    e[ 7] = 0;
+  
+    e[ 8] = (right + left) * rw;
+    e[ 9] = (top + bottom) * rh;
+    e[10] = -(far + near) * rd;
+    e[11] = -1;
+  
+    e[12] = 0;
+    e[13] = 0;
+    e[14] = -2 * near * far * rd;
+    e[15] = 0;
+  
+    return this;
+  };
+  
+  /**
+   * Multiply the perspective projection matrix from the right.
+   * @param left The coordinate of the left of clipping plane.
+   * @param right The coordinate of the right of clipping plane.
+   * @param bottom The coordinate of the bottom of clipping plane.
+   * @param top The coordinate of the top top clipping plane.
+   * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+   * @param far The distances to the farther depth clipping plane. This value must be plus value.
+   * @return this
+   */
+  Matrix4.prototype.frustum = function(left, right, bottom, top, near, far) {
+    return this.concat(new Matrix4().setFrustum(left, right, bottom, top, near, far));
+  };
+  
+  /**
+   * Set the perspective projection matrix by fovy and aspect.
+   * @param fovy The angle between the upper and lower sides of the frustum.
+   * @param aspect The aspect ratio of the frustum. (width/height)
+   * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+   * @param far The distances to the farther depth clipping plane. This value must be plus value.
+   * @return this
+   */
+  Matrix4.prototype.setPerspective = function(fovy, aspect, near, far) {
+    var e, rd, s, ct;
+  
+    if (near === far || aspect === 0) {
+      throw 'null frustum';
+    }
+    if (near <= 0) {
+      throw 'near <= 0';
+    }
+    if (far <= 0) {
+      throw 'far <= 0';
+    }
+  
+    fovy = Math.PI * fovy / 180 / 2;
+    s = Math.sin(fovy);
+    if (s === 0) {
+      throw 'null frustum';
+    }
+  
+    rd = 1 / (far - near);
+    ct = Math.cos(fovy) / s;
+  
+    e = this.elements;
+  
+    e[0]  = ct / aspect;
+    e[1]  = 0;
+    e[2]  = 0;
+    e[3]  = 0;
+  
+    e[4]  = 0;
+    e[5]  = ct;
+    e[6]  = 0;
+    e[7]  = 0;
+  
+    e[8]  = 0;
+    e[9]  = 0;
+    e[10] = -(far + near) * rd;
+    e[11] = -1;
+  
+    e[12] = 0;
+    e[13] = 0;
+    e[14] = -2 * near * far * rd;
+    e[15] = 0;
+  
+    return this;
+  };
+  
+  /**
+   * Multiply the perspective projection matrix from the right.
+   * @param fovy The angle between the upper and lower sides of the frustum.
+   * @param aspect The aspect ratio of the frustum. (width/height)
+   * @param near The distances to the nearer depth clipping plane. This value must be plus value.
+   * @param far The distances to the farther depth clipping plane. This value must be plus value.
+   * @return this
+   */
+  Matrix4.prototype.perspective = function(fovy, aspect, near, far) {
+    return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far));
+  };
+  
+  /**
+   * Set the matrix for scaling.
+   * @param x The scale factor along the X axis
+   * @param y The scale factor along the Y axis
+   * @param z The scale factor along the Z axis
+   * @return this
+   */
+  Matrix4.prototype.setScale = function(x, y, z) {
+    var e = this.elements;
+    e[0] = x;  e[4] = 0;  e[8]  = 0;  e[12] = 0;
+    e[1] = 0;  e[5] = y;  e[9]  = 0;  e[13] = 0;
+    e[2] = 0;  e[6] = 0;  e[10] = z;  e[14] = 0;
+    e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+    return this;
+  };
+  
+  /**
+   * Multiply the matrix for scaling from the right.
+   * @param x The scale factor along the X axis
+   * @param y The scale factor along the Y axis
+   * @param z The scale factor along the Z axis
+   * @return this
+   */
+  Matrix4.prototype.scale = function(x, y, z) {
+    var e = this.elements;
+    e[0] *= x;  e[4] *= y;  e[8]  *= z;
+    e[1] *= x;  e[5] *= y;  e[9]  *= z;
+    e[2] *= x;  e[6] *= y;  e[10] *= z;
+    e[3] *= x;  e[7] *= y;  e[11] *= z;
+    return this;
+  };
+  
+  /**
+   * Set the matrix for translation.
+   * @param x The X value of a translation.
+   * @param y The Y value of a translation.
+   * @param z The Z value of a translation.
+   * @return this
+   */
+  Matrix4.prototype.setTranslate = function(x, y, z) {
+    var e = this.elements;
+    e[0] = 1;  e[4] = 0;  e[8]  = 0;  e[12] = x;
+    e[1] = 0;  e[5] = 1;  e[9]  = 0;  e[13] = y;
+    e[2] = 0;  e[6] = 0;  e[10] = 1;  e[14] = z;
+    e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+    return this;
+  };
+  
+  /**
+   * Multiply the matrix for translation from the right.
+   * @param x The X value of a translation.
+   * @param y The Y value of a translation.
+   * @param z The Z value of a translation.
+   * @return this
+   */
+  Matrix4.prototype.translate = function(x, y, z) {
+    var e = this.elements;
+    e[12] += e[0] * x + e[4] * y + e[8]  * z;
+    e[13] += e[1] * x + e[5] * y + e[9]  * z;
+    e[14] += e[2] * x + e[6] * y + e[10] * z;
+    e[15] += e[3] * x + e[7] * y + e[11] * z;
+    return this;
+  };
+  
+  /**
+   * Set the matrix for rotation.
+   * The vector of rotation axis may not be normalized.
+   * @param angle The angle of rotation (degrees)
+   * @param x The X coordinate of vector of rotation axis.
+   * @param y The Y coordinate of vector of rotation axis.
+   * @param z The Z coordinate of vector of rotation axis.
+   * @return this
+   */
+  Matrix4.prototype.setRotate = function(angle, x, y, z) {
+    var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs;
+  
+    angle = Math.PI * angle / 180;
+    e = this.elements;
+  
+    s = Math.sin(angle);
+    c = Math.cos(angle);
+  
+    if (0 !== x && 0 === y && 0 === z) {
+      // Rotation around X axis
+      if (x < 0) {
+        s = -s;
+      }
+      e[0] = 1;  e[4] = 0;  e[ 8] = 0;  e[12] = 0;
+      e[1] = 0;  e[5] = c;  e[ 9] =-s;  e[13] = 0;
+      e[2] = 0;  e[6] = s;  e[10] = c;  e[14] = 0;
+      e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+    } else if (0 === x && 0 !== y && 0 === z) {
+      // Rotation around Y axis
+      if (y < 0) {
+        s = -s;
+      }
+      e[0] = c;  e[4] = 0;  e[ 8] = s;  e[12] = 0;
+      e[1] = 0;  e[5] = 1;  e[ 9] = 0;  e[13] = 0;
+      e[2] =-s;  e[6] = 0;  e[10] = c;  e[14] = 0;
+      e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+    } else if (0 === x && 0 === y && 0 !== z) {
+      // Rotation around Z axis
+      if (z < 0) {
+        s = -s;
+      }
+      e[0] = c;  e[4] =-s;  e[ 8] = 0;  e[12] = 0;
+      e[1] = s;  e[5] = c;  e[ 9] = 0;  e[13] = 0;
+      e[2] = 0;  e[6] = 0;  e[10] = 1;  e[14] = 0;
+      e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;
+    } else {
+      // Rotation around another axis
+      len = Math.sqrt(x*x + y*y + z*z);
+      if (len !== 1) {
+        rlen = 1 / len;
+        x *= rlen;
+        y *= rlen;
+        z *= rlen;
+      }
+      nc = 1 - c;
+      xy = x * y;
+      yz = y * z;
+      zx = z * x;
+      xs = x * s;
+      ys = y * s;
+      zs = z * s;
+  
+      e[ 0] = x*x*nc +  c;
+      e[ 1] = xy *nc + zs;
+      e[ 2] = zx *nc - ys;
+      e[ 3] = 0;
+  
+      e[ 4] = xy *nc - zs;
+      e[ 5] = y*y*nc +  c;
+      e[ 6] = yz *nc + xs;
+      e[ 7] = 0;
+  
+      e[ 8] = zx *nc + ys;
+      e[ 9] = yz *nc - xs;
+      e[10] = z*z*nc +  c;
+      e[11] = 0;
+  
+      e[12] = 0;
+      e[13] = 0;
+      e[14] = 0;
+      e[15] = 1;
+    }
+  
+    return this;
+  };
+  
+  /**
+   * Multiply the matrix for rotation from the right.
+   * The vector of rotation axis may not be normalized.
+   * @param angle The angle of rotation (degrees)
+   * @param x The X coordinate of vector of rotation axis.
+   * @param y The Y coordinate of vector of rotation axis.
+   * @param z The Z coordinate of vector of rotation axis.
+   * @return this
+   */
+  Matrix4.prototype.rotate = function(angle, x, y, z) {
+    return this.concat(new Matrix4().setRotate(angle, x, y, z));
+  };
+  
+  /**
+   * Set the viewing matrix.
+   * @param eyeX, eyeY, eyeZ The position of the eye point.
+   * @param centerX, centerY, centerZ The position of the reference point.
+   * @param upX, upY, upZ The direction of the up vector.
+   * @return this
+   */
+  Matrix4.prototype.setLookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
+    var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz;
+  
+    fx = centerX - eyeX;
+    fy = centerY - eyeY;
+    fz = centerZ - eyeZ;
+  
+    // Normalize f.
+    rlf = 1 / Math.sqrt(fx*fx + fy*fy + fz*fz);
+    fx *= rlf;
+    fy *= rlf;
+    fz *= rlf;
+  
+    // Calculate cross product of f and up.
+    sx = fy * upZ - fz * upY;
+    sy = fz * upX - fx * upZ;
+    sz = fx * upY - fy * upX;
+  
+    // Normalize s.
+    rls = 1 / Math.sqrt(sx*sx + sy*sy + sz*sz);
+    sx *= rls;
+    sy *= rls;
+    sz *= rls;
+  
+    // Calculate cross product of s and f.
+    ux = sy * fz - sz * fy;
+    uy = sz * fx - sx * fz;
+    uz = sx * fy - sy * fx;
+  
+    // Set to this.
+    e = this.elements;
+    e[0] = sx;
+    e[1] = ux;
+    e[2] = -fx;
+    e[3] = 0;
+  
+    e[4] = sy;
+    e[5] = uy;
+    e[6] = -fy;
+    e[7] = 0;
+  
+    e[8] = sz;
+    e[9] = uz;
+    e[10] = -fz;
+    e[11] = 0;
+  
+    e[12] = 0;
+    e[13] = 0;
+    e[14] = 0;
+    e[15] = 1;
+  
+    // Translate.
+    return this.translate(-eyeX, -eyeY, -eyeZ);
+  };
+  
+  /**
+   * Multiply the viewing matrix from the right.
+   * @param eyeX, eyeY, eyeZ The position of the eye point.
+   * @param centerX, centerY, centerZ The position of the reference point.
+   * @param upX, upY, upZ The direction of the up vector.
+   * @return this
+   */
+  Matrix4.prototype.lookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
+    return this.concat(new Matrix4().setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ));
+  };
+  
+  /**
+   * Multiply the matrix for project vertex to plane from the right.
+   * @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0".
+   * @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light.
+   * @return this
+   */
+  Matrix4.prototype.dropShadow = function(plane, light) {
+    var mat = new Matrix4();
+    var e = mat.elements;
+  
+    var dot = plane[0] * light[0] + plane[1] * light[1] + plane[2] * light[2] + plane[3] * light[3];
+  
+    e[ 0] = dot - light[0] * plane[0];
+    e[ 1] =     - light[1] * plane[0];
+    e[ 2] =     - light[2] * plane[0];
+    e[ 3] =     - light[3] * plane[0];
+  
+    e[ 4] =     - light[0] * plane[1];
+    e[ 5] = dot - light[1] * plane[1];
+    e[ 6] =     - light[2] * plane[1];
+    e[ 7] =     - light[3] * plane[1];
+  
+    e[ 8] =     - light[0] * plane[2];
+    e[ 9] =     - light[1] * plane[2];
+    e[10] = dot - light[2] * plane[2];
+    e[11] =     - light[3] * plane[2];
+  
+    e[12] =     - light[0] * plane[3];
+    e[13] =     - light[1] * plane[3];
+    e[14] =     - light[2] * plane[3];
+    e[15] = dot - light[3] * plane[3];
+  
+    return this.concat(mat);
+  }
+  
+  /**
+   * Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.)
+   * @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.)
+   * @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane.
+   * @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.)
+   * @return this
+   */
+  Matrix4.prototype.dropShadowDirectionally = function(normX, normY, normZ, planeX, planeY, planeZ, lightX, lightY, lightZ) {
+    var a = planeX * normX + planeY * normY + planeZ * normZ;
+    return this.dropShadow([normX, normY, normZ, -a], [lightX, lightY, lightZ, 0]);
+  };
+  
+  /**
+   * Constructor of Vector3
+   * If opt_src is specified, new vector is initialized by opt_src.
+   * @param opt_src source vector(option)
+   */
+  var Vector3 = function(opt_src) {
+    var v = new Float32Array(3);
+    if (opt_src && typeof opt_src === 'object') {
+      v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2];
+    } 
+    this.elements = v;
+  }
+  
+  /**
+    * Normalize.
+    * @return this
+    */
+  Vector3.prototype.normalize = function() {
+    var v = this.elements;
+    var c = v[0], d = v[1], e = v[2], g = Math.sqrt(c*c+d*d+e*e);
+    if(g){
+      if(g == 1)
+          return this;
+     } else {
+       v[0] = 0; v[1] = 0; v[2] = 0;
+       return this;
+     }
+     g = 1/g;
+     v[0] = c*g; v[1] = d*g; v[2] = e*g;
+     return this;
+  };
+  
+  /**
+   * Constructor of Vector4
+   * If opt_src is specified, new vector is initialized by opt_src.
+   * @param opt_src source vector(option)
+   */
+  var Vector4 = function(opt_src) {
+    var v = new Float32Array(4);
+    if (opt_src && typeof opt_src === 'object') {
+      v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; v[3] = opt_src[3];
+    } 
+    this.elements = v;
+  }
+  
\ No newline at end of file
diff --git a/lab4/src/lab4.html b/lab4/src/lab4.html
index 2bb37bcbd21a70f6bb9acddb83953d93aa5bf516..6a66f46796597805188cccbb35424dd4f914254e 100644
--- a/lab4/src/lab4.html
+++ b/lab4/src/lab4.html
@@ -5,9 +5,23 @@
   <title>Lab 4</title>
 </head>
 <body onload="main()">
-<canvas width="400" height="600" id="my-canvas">
+<canvas width="800" height="600" id="my-canvas">
   Please use a browser that supports "canvas"
 </canvas>
+<p id="activatedLight">Activated light: Point light</p>
+<div>
+  <p id="pointLightPosition">Point light position:</p>
+  <p id="pointLightX">x: 0</p>
+  <p id="pointLightY">y: 2</p>
+  <p id="pointLightZ">z: 0</p>
+</div>
+<div>
+  <p id="directionalLightDirection">Directional light direction:</p>
+  <p id="directionalLightX">x: 0</p>
+  <p id="directionalLightY">y: 2</p>
+  <p id="directionalLightZ">z: 0</p>
+</div>
+<script src="../lib/cuon-matrix.js"></script>
 <script src="../lib/webgl-utils.js"></script>
 <script src="../lib/webgl-debug.js"></script>
 <script src="../lib/cuon-utils.js"></script>
diff --git a/lab4/src/lab4.js b/lab4/src/lab4.js
index 105a227db9e7e4d4abde40b5002e7c75eb860fb4..d691a2026b92cdd3ed5739008825be32bb194a2c 100644
--- a/lab4/src/lab4.js
+++ b/lab4/src/lab4.js
@@ -1,18 +1,883 @@
+// Source shaders shadows: http://rodger.global-linguist.com/webgl/ch10/Shadow_highp.html
+// Vertex shader program for generating a shadow map
+var SHADOW_VSHADER_SOURCE =
+  'attribute vec4 a_Position;\n' +
+  'uniform mat4 u_MvpMatrix;\n' +
+  'void main() {\n' +
+  '  gl_Position = u_MvpMatrix * a_Position;\n' +
+  '}\n';
+
+// Fragment shader program for generating a shadow map
+var SHADOW_FSHADER_SOURCE =
+  '#ifdef GL_ES\n' +
+  'precision mediump float;\n' +
+  '#endif\n' +
+  'void main() {\n' +
+  '  const vec4 bitShift = vec4(1.0, 256.0, 256.0 * 256.0, 256.0 * 256.0 * 256.0);\n' +
+  '  const vec4 bitMask = vec4(1.0/256.0, 1.0/256.0, 1.0/256.0, 0.0);\n' +
+  '  vec4 rgbaDepth = fract(gl_FragCoord.z * bitShift);\n' + // Calculate the value stored into each byte
+  '  rgbaDepth -= rgbaDepth.gbaa * bitMask;\n' + // Cut off the value which do not fit in 8 bits
+  '  gl_FragColor = rgbaDepth;\n' +
+  '}\n';
+
 // Vertex shader program
-const VSHADER_SOURCE =
-  '\n' +
-  // TODO: Implement your vertex shader code here
-  '\n';
+var VSHADER_SOURCE = 
+  'attribute vec4 a_Position;\n' + 
+  'attribute vec4 a_Color;\n' + 
+  'attribute vec3 a_Normal;\n' + // Normal
+
+  'uniform mat4 u_MvpMatrix;\n' +
+  'uniform bool u_Clicked;\n' + //CLICK
+  'uniform mat4 u_ModelMatrix;\n' +  //Point
+  'uniform mat4 u_ModelMatrixInverseTransposee;\n' + //Directional + Point
+  'uniform vec3 u_PositionLight;\n' + //Point
+
+  'varying vec4 v_Color;\n' +
+  'varying vec3 v_Normal;\n' +
+  'varying vec3 v_ModelToLightDirection;\n' + //Point
+
+  //SHADOWS
+  'uniform mat4 u_MvpMatrixFromLight;\n' + 
+  'varying vec4 v_PositionFromLight;\n' + 
+
+  'void main() {\n' +
+  '  gl_Position = u_MvpMatrix * a_Position ;\n' +
+  //CLICK
+  '  if (u_Clicked) {\n' +
+  '     v_Color = vec4(1.0, 0.0, 0.0, 1.0);\n' +    // Set the varying color value with the attribute color value
+  '  } else {\n' +
+  '     v_Color = a_Color;\n' +
+  '  }' +
+  '  v_Normal = mat3(u_ModelMatrixInverseTransposee) * a_Normal;\n' + //Réorientation des normales selon la position du modèle (Directional et Point)
+
+  '  vec3 actualModelPosition = (u_ModelMatrix * a_Position).xyz;\n' + //Point
+  '  v_ModelToLightDirection = u_PositionLight - actualModelPosition;\n' + //Point
+
+  //SHADOWS
+  '  v_PositionFromLight = u_MvpMatrixFromLight * a_Position;\n' +
+  '}\n';
 
 // Fragment shader program
 const FSHADER_SOURCE =
-  '\n' +
-  // TODO: Implement your fragment shader code here
-  '\n';
+  'precision mediump float;\n' + // This determines how much precision the GPU uses when calculating floats
+
+  'varying vec4 v_Color;\n' +   // Varying variable color to get the vertex color from
+  'varying vec3 v_Normal;\n' + //Directional et Point
+  'varying vec3 v_ModelToLightDirection;\n' + //Point
+  
+  'uniform vec3 u_Ambiant;\n' + 
+  'uniform vec3 u_LightDirection;\n' + //Directional
+  'uniform vec3 u_LightColor_Directional;\n' + 
+  'uniform vec3 u_LightColor_Point;\n' +
+
+  //SHADOWS
+  'uniform sampler2D u_ShadowMap;\n' +
+  'varying vec4 v_PositionFromLight;\n' +
+  
+  // Recalculate the z value from the rgba
+  'float unpackDepth(const in vec4 rgbaDepth) {\n' +
+  '  const vec4 bitShift = vec4(1.0, 1.0/256.0, 1.0/(256.0*256.0), 1.0/(256.0*256.0*256.0));\n' +
+  '  float depth = dot(rgbaDepth, bitShift);\n' + // Use dot() since the calculations is same
+  '  return depth;\n' +
+  '}\n' +
+
+  'void main() {\n' +
+  //SHADOWS
+  '  vec3 shadowCoord = (v_PositionFromLight.xyz/v_PositionFromLight.w)/2.0 + 0.5;\n' +
+  '  vec4 rgbaDepth = texture2D(u_ShadowMap, shadowCoord.xy);\n' +
+  '  float depth = unpackDepth(rgbaDepth);\n' + // Recalculate the z value from the rgba
+  '  float visibility = (shadowCoord.z > depth + 0.0005) ? 0.7 : 1.0;\n' +
+
+  '  vec3 normal = normalize(v_Normal.xyz);\n' + //Directional et Point
+  '  vec3 ambiant = v_Color.rgb * u_Ambiant;\n' + //Directional et Point
+
+  '  float lightDirectional = max(dot(normal, u_LightDirection), 0.0);\n' + //Directional
+  '  float lightPoint = max(dot(normal, normalize(v_ModelToLightDirection)), 0.0);\n' + //Point
+
+  '  gl_FragColor = vec4((u_LightColor_Point * v_Color.rgb * lightPoint * visibility) + (u_LightColor_Directional * v_Color.rgb * lightDirectional * visibility) + ambiant, v_Color.a);\n' + // Set the fragment color with the vertex shader
+  '}\n';
+
+  //Array utilisés pour modifier la position ou la direction des lumières avec les touches du clavier.
+  var directionalLightDirection = [0.00001, 2.0, 0.00001];
+  var pointLightPosition = [0.00001, 2.0, 0.00001];
+  var lightDirection;
+  pointLight = true;
+
+  var clickAndRotate = false;
+  var clickAndRotateValue = 0;
+
+  var viewProjMatrixFromLight = new Matrix4(); // Prepare a view projection matrix for generating a shadow map
+  var viewProjMatrix = new Matrix4();
+  
+  var mvpMatrixFromLight_sablier_top = new Matrix4();
+  var mvpMatrixFromLight_sablier_bottom = new Matrix4();
+  var mvpMatrixFromLight_plain = new Matrix4();
+  var mvpMatrix = new Matrix4();   // Model view projection matrix
+  
+  var modelMatrix = new Matrix4();
+  var modelMatrixInverseTransposee = new Matrix4();
+
+  var mouseMovement = [0.0, 0.0];
+
+  var OFFSCREEN_WIDTH = 2048, OFFSCREEN_HEIGHT = 2048;
 
 function main() {
   // Retrieve <canvas> element
   const canvas = document.getElementById('my-canvas');
 
-  // TODO: Complete with your code here
+  // Get the rendering context for WebGL
+  const gl = getWebGLContext(canvas);
+  if (!gl) {
+    console.log('Failed to get the rendering context for WebGL');
+    return;  
+  }
+
+  // Initialize shaders for generating a shadow map
+  var shadowProgram = createProgram(gl, SHADOW_VSHADER_SOURCE, SHADOW_FSHADER_SOURCE);
+  shadowProgram.a_Position = gl.getAttribLocation(shadowProgram, 'a_Position');
+  shadowProgram.u_MvpMatrix = gl.getUniformLocation(shadowProgram, 'u_MvpMatrix');
+  if (shadowProgram.a_Position < 0 || !shadowProgram.u_MvpMatrix) {
+    console.log('Failed to get the storage location of attribute or uniform variable from shadowProgram'); 
+    return;
+  }
+
+  // Initialize shaders for regular drawing
+  var normalProgram = createProgram(gl, VSHADER_SOURCE, FSHADER_SOURCE);
+  normalProgram.a_Position = gl.getAttribLocation(normalProgram, 'a_Position');
+  normalProgram.a_Color = gl.getAttribLocation(normalProgram, 'a_Color');
+  normalProgram.a_Normal = gl.getAttribLocation(normalProgram, 'a_Normal');
+  normalProgram.u_MvpMatrix = gl.getUniformLocation(normalProgram, 'u_MvpMatrix');
+  normalProgram.u_Clicked = gl.getUniformLocation(normalProgram, 'u_Clicked');
+  normalProgram.u_ModelMatrix = gl.getUniformLocation(normalProgram, 'u_ModelMatrix');
+  normalProgram.u_ModelMatrixInverseTransposee = gl.getUniformLocation(normalProgram, 'u_ModelMatrixInverseTransposee');
+  normalProgram.u_PositionLight = gl.getUniformLocation(normalProgram, 'u_PositionLight');
+  normalProgram.u_MvpMatrixFromLight = gl.getUniformLocation(normalProgram, 'u_MvpMatrixFromLight');
+  normalProgram.u_Ambiant = gl.getUniformLocation(normalProgram, 'u_Ambiant');
+  normalProgram.u_LightDirection = gl.getUniformLocation(normalProgram, 'u_LightDirection');
+  normalProgram.u_LightColor_Directional = gl.getUniformLocation(normalProgram, 'u_LightColor_Directional');
+  normalProgram.u_LightColor_Point = gl.getUniformLocation(normalProgram, 'u_LightColor_Point');
+  normalProgram.u_ShadowMap = gl.getUniformLocation(normalProgram, 'u_ShadowMap');
+  if (normalProgram.a_Position < 0 || normalProgram.a_Color < 0 || normalProgram.a_Normal < 0 || !normalProgram.u_MvpMatrix || !normalProgram.u_Clicked ||
+    !normalProgram.u_ModelMatrix || !normalProgram.u_ModelMatrixInverseTransposee || !normalProgram.u_PositionLight || !normalProgram.u_MvpMatrixFromLight ||
+    !normalProgram.u_Ambiant || !normalProgram.u_LightDirection || !normalProgram.u_LightColor_Directional || !normalProgram.u_LightColor_Point || !normalProgram.u_ShadowMap) {
+    console.log('Failed to get the storage location of attribute or uniform variable from normalProgram'); 
+    return;
+  }
+  
+  var sablierObject = initVertexBuffersForSablier(gl);
+  var plainObject = initVertexBuffersForPlain(gl);
+  if (!sablierObject || !plainObject) {
+    console.log('Failed to set the vertex information');
+    return;
+  }
+
+  // Initialize framebuffer object (FBO)  
+  var fbo = initFramebufferObject(gl);
+  if (!fbo) {
+    console.log('Failed to initialize frame buffer object');
+    return;
+  }
+  gl.activeTexture(gl.TEXTURE0); // Set a texture object to the texture unit. Active l'unité de texture 0
+  gl.bindTexture(gl.TEXTURE_2D, fbo.texture);
+
+  // Specify the color for clearing <canvas>
+  gl.clearColor(0, 0, 0, 1);
+  
+  //OpenGL performs a depth test and if this test passes,
+  //the fragment is rendered and the depth buffer is updated with the new depth value. If the depth test fails, the fragment is discarded. 
+  gl.enable(gl.DEPTH_TEST);
+
+  gl.useProgram(normalProgram);
+  
+  //Directional
+  gl.uniform3f(normalProgram.u_LightColor_Directional, 0.0, 0.0, 0.0);
+  lightDirection = new Vector3(directionalLightDirection);
+  gl.uniform3fv(normalProgram.u_LightDirection, lightDirection.normalize().elements);
+  
+  //Positional
+  gl.uniform3f(normalProgram.u_LightColor_Point, 1.0, 1.0, 1.0);
+  gl.uniform3fv(normalProgram.u_PositionLight, pointLightPosition);
+
+  gl.uniform3f(normalProgram.u_Ambiant, 0.2, 0.2, 0.2);
+
+  gl.uniform1i(normalProgram.u_Clicked, 0); // Pass false to u_Clicked
+
+  viewProjMatrixFromLight.setPerspective(100.0, OFFSCREEN_WIDTH/OFFSCREEN_HEIGHT, 0.1, 100.0);
+  viewProjMatrixFromLight.lookAt(pointLightPosition[0], pointLightPosition[1], pointLightPosition[2], 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
+
+  // Calculate the view projection matrix
+  viewProjMatrix.setPerspective(30.0, canvas.width / canvas.height, 1.0, 100.0); //Profondeur
+  viewProjMatrix.lookAt(3.0, 3.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);  //Position, Point de vision, Direction
+
+  initEventHandlers(document, canvas, gl, fbo, shadowProgram, normalProgram, plainObject, sablierObject, viewProjMatrix, viewProjMatrixFromLight);
+    
+  var render = function() {
+    drawScene(canvas, gl, fbo, shadowProgram, normalProgram, plainObject, sablierObject, viewProjMatrix, viewProjMatrixFromLight);
+    //Appel de la fonction render à chaque image
+    requestAnimationFrame(render);
+  };
+  render();
+}
+
+function drawScene(canvas, gl, fbo, shadowProgram, normalProgram, plainObject, sablierObject, viewProjMatrix, viewProjMatrixFromLight) {
+  viewProjMatrixFromLight.setPerspective(100.0, OFFSCREEN_WIDTH/OFFSCREEN_HEIGHT, 0.1, 100.0);
+  if (pointLight) {
+    viewProjMatrixFromLight.lookAt(pointLightPosition[0], pointLightPosition[1], pointLightPosition[2], 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
+  } 
+  else {
+    viewProjMatrixFromLight.lookAt(directionalLightDirection[0], directionalLightDirection[1], directionalLightDirection[2], 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
+  }
+
+  gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);               // Change the drawing destination to FBO
+  gl.viewport(0, 0, OFFSCREEN_HEIGHT, OFFSCREEN_HEIGHT); // Modif du viewport pour être à la taille du FBO
+  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);   // Clear FBO    
+
+  gl.useProgram(shadowProgram); // Set shaders for generating a shadow map
+
+  drawPyramid(gl, shadowProgram, viewProjMatrixFromLight, sablierObject, false);
+  mvpMatrixFromLight_sablier_bottom.set(mvpMatrix);
+
+  drawPyramid(gl, shadowProgram, viewProjMatrixFromLight, sablierObject, true);
+  mvpMatrixFromLight_sablier_top.set(mvpMatrix);
+
+  drawPlain(gl, shadowProgram, viewProjMatrixFromLight, plainObject);
+  mvpMatrixFromLight_plain.set(mvpMatrix);
+
+  gl.bindFramebuffer(gl.FRAMEBUFFER, null);               // Change the drawing destination to color buffer
+  gl.viewport(0, 0, canvas.width, canvas.height);
+  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);    // Clear color and depth buffer
+
+  gl.useProgram(normalProgram); // Set the shader for regular drawing
+  gl.uniform1i(normalProgram.u_ShadowMap, 0);  // Pass 0 because gl.TEXTURE0 is enabled
+
+  gl.uniformMatrix4fv(normalProgram.u_MvpMatrixFromLight, false, mvpMatrixFromLight_sablier_bottom.elements);
+  drawPyramid(gl, normalProgram, viewProjMatrix, sablierObject, false);
+
+  gl.uniformMatrix4fv(normalProgram.u_MvpMatrixFromLight, false, mvpMatrixFromLight_sablier_top.elements);
+  drawPyramid(gl, normalProgram, viewProjMatrix, sablierObject, true);
+
+  gl.uniformMatrix4fv(normalProgram.u_MvpMatrixFromLight, false, mvpMatrixFromLight_plain.elements);
+  drawPlain(gl, normalProgram, viewProjMatrix, plainObject);
+}
+
+function drawPyramid(gl, program, viewProjMatrix, o, drawTop) {
+    //Update model movement with mouse
+    modelMatrix.setRotate(mouseMovement[0], 1.0, 0.0, 0.0);
+    modelMatrix.rotate(mouseMovement[1], 0.0, 1.0, 0.0);
+
+    if (drawTop) {
+      modelMatrix.rotate(180, 1.0, 0.0, 0.0);
+      
+      if (clickAndRotateValue % 180 == 0) {
+        clickAndRotate = false;
+      }
+    } 
+    else {
+      if (clickAndRotate) {
+        clickAndRotateValue += 1
+      }
+    }
+
+    modelMatrix.rotate(clickAndRotateValue, 1.0, 0.0, 0.0);
+
+    draw(gl, program, viewProjMatrix, o)
+}
+
+function drawPlain(gl, program, viewProjMatrix, o) {
+    //Update model movement with mouse
+    modelMatrix.setRotate(mouseMovement[0], 1.0, 0.0, 0.0);
+    modelMatrix.rotate(mouseMovement[1], 0.0, 1.0, 0.0);
+    
+    draw(gl, program, viewProjMatrix, o)
+}
+
+function draw(gl, program, viewProjMatrix, o) {
+  initAttributeVariable(gl, program.a_Position, o.vertices);
+  if (program.a_Color != undefined && program.a_Normal != undefined) {
+    initAttributeVariable(gl, program.a_Color, o.colors);
+    initAttributeVariable(gl, program.a_Normal, o.normals);
+  }
+  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, o.indices);
+
+  if (program.u_PositionLight != undefined && program.u_LightDirection != undefined) {
+    //Point light position
+    gl.uniform3fv(program.u_PositionLight, pointLightPosition);
+    //Directional light direction
+    lightDirection = new Vector3(directionalLightDirection);
+    gl.uniform3fv(program.u_LightDirection, lightDirection.normalize().elements);
+  }
+  
+  mvpMatrix.set(viewProjMatrix).multiply(modelMatrix);
+  gl.uniformMatrix4fv(program.u_MvpMatrix, false, mvpMatrix.elements);
+  if (program.u_ModelMatrix != undefined && program.u_ModelMatrixInverseTransposee != undefined) {
+    gl.uniformMatrix4fv(program.u_ModelMatrix, false, modelMatrix.elements);
+    
+    modelMatrixInverseTransposee.setInverseOf(modelMatrix).transpose()
+    gl.uniformMatrix4fv(program.u_ModelMatrixInverseTransposee, false, modelMatrixInverseTransposee.elements);
+  }
+
+  gl.drawElements(gl.TRIANGLES, o.nIndices, gl.UNSIGNED_BYTE, 0);
+}
+
+function initAttributeVariable(gl, attribute, buffer) {
+  gl.bindBuffer(gl.ARRAY_BUFFER, buffer)
+  gl.vertexAttribPointer(attribute, buffer.num, buffer.type, false, 0, 0);
+  gl.enableVertexAttribArray(attribute);
+}
+
+function subtractArrays(array1, array2) {
+  result = []
+  for (let i = 0; i < array1.length; i++){
+    result.push(array1[i] - array2[i]);
+  }
+  return result;
+}
+
+function calcNormal(vertices, normals, indices) {
+  for (let i = 0; i < indices.length; i += 3) {
+    let A = [vertices[indices[i] * 3], vertices[indices[i] * 3 + 1], vertices[indices[i] * 3 + 2]];
+    let B = [vertices[indices[i + 1] * 3], vertices[indices[i + 1] * 3 + 1], vertices[indices[i + 1] * 3 + 2]];
+    let C = [vertices[indices[i + 2] * 3], vertices[indices[i + 2] * 3 + 1], vertices[indices[i + 2] * 3 + 2]];
+
+    let U = subtractArrays(B, A);
+    let V = subtractArrays(C, A);
+
+    for (let j = 0; j < 3; j++) {
+      normals[indices[i + j] * 3] = (U[1] * V[2] - U[2] * V[1]);
+      normals[indices[i + j] * 3 + 1] = (U[2] * V[0] - U[0] * V[2]);
+      normals[indices[i + j] * 3 + 2] = (U[0] * V[1] - U[1] * V[0]);
+    }
+  }
+}
+
+function initVertexBuffersForPlain(gl) {
+  // This is the model
+  let vertices = new Float32Array([
+    //Plain
+    -2.0, -0.9, -2.0,
+    -2.0, -0.9, 2.0,
+    2.0, -0.9, -2.0,
+    2.0, -0.9, 2.0
+  ]);
+
+  let colors = new Float32Array([
+    //Plain
+    1.0, 1.0, 1.0,
+    1.0, 1.0, 1.0,
+    1.0, 1.0, 1.0,
+    1.0, 1.0, 1.0
+  ]);
+
+  let normals = new Float32Array([
+    //Plain
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0
+  ]);
+
+  let indices = new Uint8Array([
+    0, 1, 2, //Plain
+    1, 3, 2
+  ]);
+
+  calcNormal(vertices, normals, indices);
+
+  var o = new Object();
+
+  o.vertices = initArrayBuffer(gl, vertices, 3, gl.FLOAT);
+  o.colors = initArrayBuffer(gl, colors, 3, gl.FLOAT);
+  o.normals = initArrayBuffer(gl, normals, 3, gl.FLOAT);
+  o.indices = initElementArrayBuffer(gl, indices, 3, gl.FLOAT);
+  if (!o.vertices || !o.colors || !o.normals || !o.indices) {
+    console.log("Failed to create object");
+    return -1;
+  }
+
+  o.nIndices = indices.length;
+  
+  // Unbind the buffer object
+  gl.bindBuffer(gl.ARRAY_BUFFER, null);
+  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
+
+  return o;
+}
+
+let colors_blue = new Float32Array([
+  //Grande base
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  
+  //Petite base
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+
+  //Face arrière
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+
+  //Face gauche
+  0.0, 0.0, 1.0, 
+  0.0, 0.0, 1.0, 
+  0.0, 0.0, 1.0, 
+  0.0, 0.0, 1.0, 
+  0.0, 0.0, 1.0,
+
+  //Face droite
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+
+  //Face avant
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+  0.0, 0.0, 1.0,
+]);
+
+let colors_green = new Float32Array([
+  //Grande base
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  
+  //Petite base
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+
+  //Face arrière
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+
+  //Face gauche
+  0.0, 1.0, 0.0, 
+  0.0, 1.0, 0.0, 
+  0.0, 1.0, 0.0, 
+  0.0, 1.0, 0.0, 
+  0.0, 1.0, 0.0,
+
+  //Face droite
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+
+  //Face avant
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+  0.0, 1.0, 0.0,
+]);
+
+function initVertexBuffersForSablier(gl) {
+  // This is the model
+  let vertices = new Float32Array([
+    //Grande base
+    -0.4, -0.8, -0.4, 
+    -0.4, -0.8, 0.4,
+    0.4, -0.8, -0.4,
+    0.4, -0.8, 0.4, 
+    
+    //Petite base
+    -0.2, 0.0, -0.2,
+    -0.2, 0.0, 0.2,
+    0.2, 0.0, -0.2,
+    0.2, 0.0, 0.2,
+
+    //Face arrière
+    -0.4, -0.8, 0.4,
+    -0.2, 0.0, 0.2,
+    0.0, -0.8, 0.4,
+    0.2, 0.0, 0.2,
+    0.4, -0.8, 0.4,
+
+    //Face gauche
+    -0.4, -0.8, 0.4,  
+    -0.2, 0.0, 0.2,   
+    -0.4, -0.8, 0.0,   
+    -0.2, 0.0, -0.2,   
+    -0.4, -0.8, -0.4,
+
+    //Face droite
+    0.4, -0.8, -0.4,   
+    0.2, 0.0, -0.2,
+    0.4, -0.8, 0.0,
+    0.2, 0.0, 0.2,
+    0.4, -0.8, 0.4,
+
+    //Face avant
+    -0.4, -0.8, -0.4,   
+    -0.2, 0.0, -0.2, 
+    0.0, -0.8, -0.4,
+    0.2, 0.0, -0.2,
+    0.4, -0.8, -0.4
+  ]);
+
+  let normals = new Float32Array([
+    //Grande base
+    0.0, 0.0, 0.0, 
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0, 
+    
+    //Petite base
+    0.0, 0.0, 0.0, 
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+
+    //Face arrière
+    0.0, 0.0, 0.0, 
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+
+    //Face gauche
+    0.0, 0.0, 0.0, 
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+
+    //Face droite
+    0.0, 0.0, 0.0, 
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+
+    //Face avant
+    0.0, 0.0, 0.0, 
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0,
+    0.0, 0.0, 0.0
+  ]);
+
+  let indices = new Uint8Array([
+    0, 2, 1, //Grande base
+    2, 3, 1,
+
+    4, 5, 6, //Petite base
+    5, 7, 6,
+
+    8, 10, 9, //Face arrière
+    10, 11, 9,
+    10, 12, 11,
+
+    13, 14, 15, //Face gauche
+    14, 16, 15,
+    16, 17, 15,
+
+    18, 19, 20, //Face droite
+    19, 21, 20,
+    21, 22, 20,
+    
+    23, 24, 25, //Face avant
+    24, 26, 25,
+    26, 27, 25
+  ]);
+
+  calcNormal(vertices, normals, indices);
+
+  var o = new Object();
+
+  o.vertices = initArrayBuffer(gl, vertices, 3, gl.FLOAT);
+  o.colors = initArrayBuffer(gl, colors_green, 3, gl.FLOAT);
+  o.normals = initArrayBuffer(gl, normals, 3, gl.FLOAT);
+  o.indices = initElementArrayBuffer(gl, indices, 3, gl.FLOAT);
+  if (!o.vertices || !o.colors || !o.normals || !o.indices) {
+    console.log("Failed to create object");
+    return -1;
+  }
+
+  o.nIndices = indices.length;
+  
+  // Unbind the buffer object
+  gl.bindBuffer(gl.ARRAY_BUFFER, null);
+  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
+
+  return o;
+}
+
+function initArrayBuffer(gl, data, num, type) {
+  // Create a buffer object
+  var buffer = gl.createBuffer();
+  if (!buffer) {
+    console.log('Failed to create the buffer object');
+    return null;
+  }
+  // Write date into the buffer object
+  gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
+  gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);
+
+  // Store the necessary information to assign the object to the attribute variable later
+  buffer.num = num;
+  buffer.type = type;
+
+  return buffer;
+}
+
+function initElementArrayBuffer(gl, data, type) {
+  // Create a buffer object
+  var buffer = gl.createBuffer();
+  if (!buffer) {
+    console.log('Failed to create the buffer object');
+    return null;
+  }
+  // Write date into the buffer object
+  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffer);
+  gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, data, gl.STATIC_DRAW);
+
+  buffer.type = type;
+
+  return buffer;
+}
+
+function initEventHandlers(document, canvas, gl, fbo, shadowProgram, normalProgram, plainObject, sablierObject, viewProjMatrix, viewProjMatrixFromLight) {
+  var dragging = false;
+  var lastX = -1, lastY = -1;
+  color = true //Green color
+
+  // Init buffers
+  colorBlueBuffer = initArrayBuffer(gl, colors_blue, 3, gl.FLOAT);
+  colorGreenBuffer = initArrayBuffer(gl, colors_green, 3, gl.FLOAT);
+  if (!colorBlueBuffer || !colorGreenBuffer) {
+    console.log("Failed to create object");
+    return -1;
+  }
+
+  //Mouse down
+  canvas.onmousedown = function(ev) {
+    dragging = true;
+
+    var x = ev.clientX, y = ev.clientY;
+    var rect = ev.target.getBoundingClientRect();
+    var x_in_canvas = x - rect.left, y_in_canvas = rect.bottom - y;
+    var picked = check(gl, canvas, fbo, shadowProgram, normalProgram, plainObject, sablierObject, x_in_canvas, y_in_canvas, viewProjMatrix, viewProjMatrixFromLight);
+    
+    if (picked) {
+      if (color) {
+        color = false; 
+        sablierObject.colors = colorBlueBuffer;
+      } else {
+        color = true; 
+        sablierObject.colors = colorGreenBuffer;
+      }
+
+      clickAndRotate = true; //Lance la rotation du sablier
+    }
+  };
+
+  //Mouse up
+  canvas.onmouseup = function(ev) { 
+    dragging = false;
+  };
+
+  //Mouse mouve
+  canvas.onmousemove = function(ev) {
+    var x = ev.clientX, y = ev.clientY;
+    if (dragging) {
+      //Speed factor
+      var speedFactor = 0.2; 
+      var dx = speedFactor * (x - lastX);
+      var dy = speedFactor * (y - lastY);
+
+      //Update angle
+      mouseMovement[1] = mouseMovement[1] + dx;
+      mouseMovement[0] = mouseMovement[0] + dy;
+    }
+    lastX = x, lastY = y;
+  };
+
+  document.onkeydown = function(ev) {
+    if (ev.keyCode == 76) { // L Key (Light mode)
+      if (pointLight) {
+        gl.uniform3f(normalProgram.u_LightColor_Point, 0.0, 0.0, 0.0);
+        gl.uniform3f(normalProgram.u_LightColor_Directional, 1.0, 1.0, 1.0);
+        pointLight = false;
+      }
+      else {
+        gl.uniform3f(normalProgram.u_LightColor_Point, 1.0, 1.0, 1.0);
+        gl.uniform3f(normalProgram.u_LightColor_Directional, 0.0, 0.0, 0.0);
+        pointLight = true;
+      }
+    }
+    
+    //Direction (Directional) & Position (Point)
+    else if (ev.keyCode == 81) { //Q key
+      if (pointLight) {
+        pointLightPosition[0] += 0.1;
+      }
+      else {
+        directionalLightDirection[0] += 0.1;
+      }
+    }
+    else if (ev.keyCode == 65) { //A key
+      if (pointLight) {
+        pointLightPosition[0] -= 0.12;
+      }
+      else {
+        directionalLightDirection[0] -= 0.1;
+      }
+    }
+    else if (ev.keyCode == 87) { //W key
+      if (pointLight) {
+        pointLightPosition[1] += 0.12;
+      }
+      else {
+        directionalLightDirection[1] += 0.1;
+      }
+    }
+    else if (ev.keyCode == 83) { //S key
+      if (pointLight) {
+        pointLightPosition[1] -= 0.12;
+      }
+      else {
+        directionalLightDirection[1] -= 0.1;
+      }
+    }
+    else if (ev.keyCode == 69) { //E key
+      if (pointLight) {
+        pointLightPosition[2] -= 0.12;
+      }
+      else {
+        directionalLightDirection[2] -= 0.1;
+      }
+    }
+    else if (ev.keyCode == 68) { //D key
+      if (pointLight) {
+        pointLightPosition[2] += 0.12;
+      }
+      else {
+        directionalLightDirection[2] += 0.1;
+      }
+    }
+
+    updateHtmlLightText(pointLightPosition, directionalLightDirection, pointLight);
+  };
+}
+
+function updateHtmlLightText(pointLightPosition, directionalLightDirection, pointLight) {
+  if (pointLight) {
+    document.getElementById("activatedLight").innerHTML = "Activated light: Point light";
+  }
+  else {
+    document.getElementById("activatedLight").innerHTML = "Activated light: Directional light";
+  }
+
+  document.getElementById("pointLightX").innerHTML = "x: " + Math.round(pointLightPosition[0] * 10) / 10;
+  document.getElementById("pointLightY").innerHTML = "y: " + Math.round(pointLightPosition[1] * 10) / 10;
+  document.getElementById("pointLightZ").innerHTML = "z: " + Math.round(pointLightPosition[2] * 10) / 10;
+
+  document.getElementById("directionalLightX").innerHTML = "x: " + Math.round(directionalLightDirection[0] * 10) / 10;
+  document.getElementById("directionalLightY").innerHTML = "y: " + Math.round(directionalLightDirection[1] * 10) / 10;
+  document.getElementById("directionalLightZ").innerHTML = "z: " + Math.round(directionalLightDirection[2] * 10) / 10;
+}
+
+//Source: http://rodger.global-linguist.com/webgl/ch10/PickObject.html
+function check(gl, canvas, fbo, shadowProgram, normalProgram, plainObject, sablierObject, x, y, viewProjMatrix, viewProjMatrixFromLight) {
+  var picked = false;
+
+  gl.uniform1i(normalProgram.u_Clicked, 1);  // u_Clicked à 1 pour dessiner le sablier en rouge
+  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); 
+  drawPyramid(gl, normalProgram, viewProjMatrix, sablierObject, false);
+  drawPyramid(gl, normalProgram, viewProjMatrix, sablierObject, true);
+
+  // Read pixel at the clicked position
+  var pixels = new Uint8Array(4);
+  gl.readPixels(x, y, 1, 1, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
+
+  if (pixels[0] > 0) { //Si l'endroit où l'utilisateur a cliqué est rouge alors picked = true
+    picked = true;
+  }
+
+  gl.uniform1i(normalProgram.u_Clicked, 0);  // u_Clicked à 0 pour redessiner dans la couleur par défaut
+  
+  drawScene(canvas, gl, fbo, shadowProgram, normalProgram, plainObject, sablierObject, viewProjMatrix, viewProjMatrixFromLight); //Redessiner toute la scène
+    
+  return picked;
+}
+
+//Source http://rodger.global-linguist.com/webgl/ch10/Shadow_highp.html
+function initFramebufferObject(gl) {
+  var framebuffer, texture, depthBuffer;
+
+  // Define the error handling function
+  var error = function() {
+    if (framebuffer) gl.deleteFramebuffer(framebuffer);
+    if (texture) gl.deleteTexture(texture);
+    if (depthBuffer) gl.deleteRenderbuffer(depthBuffer);
+    return null;
+  }
+
+  // Create a framebuffer object (FBO)
+  framebuffer = gl.createFramebuffer();
+  if (!framebuffer) {
+    console.log('Failed to create frame buffer object');
+    return error();
+  }
+
+  // Create a texture object and set its size and parameters
+  texture = gl.createTexture(); // Create a texture object
+  if (!texture) {
+    console.log('Failed to create texture object');
+    return error();
+  }
+  gl.bindTexture(gl.TEXTURE_2D, texture);
+  //Paramètres texImage2D (Texture bidimensionnelle, niveau de détail de l'image de base, composantes de couleur dans la texture, largeur de la texture, hauteur de la texture
+  //largeur de la bordure, format des données de texel - pareil que le format interne, types des données de texel. 8 bits par canal pour gl.RGBA, object source de pixels de la texture)
+  gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT, 0, gl.RGBA, gl.UNSIGNED_BYTE, null); //Spécifie l'image 2D de la texture.
+  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); //Permet de paramétrer la texture (Filtre de réduction de texture)
+  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); //Permet de paramétrer la texture (Filtre de grossissement de la texture)
+
+  // Create a renderbuffer object and Set its size and parameters
+  depthBuffer = gl.createRenderbuffer(); // Create a renderbuffer object
+  if (!depthBuffer) {
+    console.log('Failed to create renderbuffer object');
+    return error();
+  }
+  gl.bindRenderbuffer(gl.RENDERBUFFER, depthBuffer);
+  //Paramètres (target renderbuffer object, internal format of renderbuffer - 16 depth bits, width of renderbuffer, height of renderbuffer)
+  gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT);
+
+  // Attach the texture and the renderbuffer object to the FBO
+  gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
+  gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0); //Attache la texture au framebuffer au point COLOR_ATTACHMENT0 = color buffer, texture bidimensionnelle, texture object
+  gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, depthBuffer); //Attache le renderbuffer au framebuffer au point DEPTH_ATTACHMENT = Depth buffer
+
+  // Check if FBO is configured correctly
+  var e = gl.checkFramebufferStatus(gl.FRAMEBUFFER);
+  if (gl.FRAMEBUFFER_COMPLETE !== e) {
+    console.log('Frame buffer object is incomplete: ' + e.toString());
+    return error();
+  }
+
+  framebuffer.texture = texture; // keep the required object
+
+  // Unbind the buffer object
+  gl.bindFramebuffer(gl.FRAMEBUFFER, null);
+  gl.bindTexture(gl.TEXTURE_2D, null);
+  gl.bindRenderbuffer(gl.RENDERBUFFER, null);
+
+  return framebuffer;
 }
\ No newline at end of file