From e10b4cfc29a51363ceeb75ceacaad5c957f0e525 Mon Sep 17 00:00:00 2001 From: Orestis <orestis.malaspinas@pm.me> Date: Thu, 14 Mar 2024 10:32:51 +0100 Subject: [PATCH] removed toucan --- .gitmodules | 3 --- lattice-boltzmann.com/content/1-dimensionless-lbm.md | 8 +++++--- 2 files changed, 5 insertions(+), 6 deletions(-) diff --git a/.gitmodules b/.gitmodules index 36c2ce1..744bd3b 100644 --- a/.gitmodules +++ b/.gitmodules @@ -1,6 +1,3 @@ -[submodule "toucan"] - path = lattice-boltzmann.com/themes/toucan - url = https://git.42l.fr/HugoTrentesaux/toucan.git [submodule "lattice-boltzmann.com/themes/abridge"] path = lattice-boltzmann.com/themes/abridge url = https://github.com/jieiku/abridge.git diff --git a/lattice-boltzmann.com/content/1-dimensionless-lbm.md b/lattice-boltzmann.com/content/1-dimensionless-lbm.md index b2cb286..c893f99 100644 --- a/lattice-boltzmann.com/content/1-dimensionless-lbm.md +++ b/lattice-boltzmann.com/content/1-dimensionless-lbm.md @@ -21,7 +21,7 @@ The incompressible Navier--Stokes equations reads $$ \begin{align} &\bm{\nabla}\cdot\bm{u}=0,\\\\ -&\frac{\partial}{\partial t}\bm{u}+\bm{u}\cdot\bm{\nabla}\bm{u}=-\frac{1}{\rho}\bm{\nabla}p+\nu\bm{\nabla}^2\bm{u}, +&\partial_t\bm{u}+\bm{u}\cdot\bm{\nabla}\bm{u}=-\frac{1}{\rho}\bm{\nabla}p+\nu\bm{\nabla}^2\bm{u}, \end{align} $$ where $p$, $\rho$, $\nu$, and $\bm{u}$ are respectively the pressure, density, kinematic viscosity, and velocity of the flow. @@ -34,7 +34,7 @@ $$ \begin{aligned} &\bm{u}^\ast=\frac{\bm{u}}{U}, &p^\ast=\frac{p}{\rho U^2},\\\\ &t^\ast=\frac{U}{L}t, &\bm{x}^\ast=\frac{\bm{x}}{L},\\\\ -&\frac{\partial}{\partial t^\ast}=\frac{L}{U}\frac{\partial}{\partial t}, &\bm{\nabla}^\ast=L\bm{\nabla} +&\partial_t^\ast=\frac{L}{U}\partial_t, &\bm{\nabla}^\ast=L\bm{\nabla} \end{aligned} \end{equation} $$ @@ -42,7 +42,7 @@ Replacing these equations into the Navier--Stokes equations one gets $$ \begin{align} &\bm{\nabla}^\ast\cdot\bm{u}^\ast=0,\\\\ -&\frac{\partial}{\partial t^\ast}\bm{u}^\ast+\bm{u}^\ast\cdot\bm{\nabla}^\ast\bm{u}^\ast=-\bm{\nabla}^\ast p^\ast+\frac{1}{\mathrm{Re}}\bm{\nabla}^{\ast 2}\bm{u}^\ast, +&\partial_t^\ast\bm{u}^\ast+\bm{u}^\ast\cdot\bm{\nabla}^\ast\bm{u}^\ast=-\bm{\nabla}^\ast p^\ast+\frac{1}{\mathrm{Re}}\bm{\nabla}^{\ast 2}\bm{u}^\ast, \end{align} $$ where $\mathrm{Re}=U\cdot L/\nu$ is the _famous_ Reynolds number which represents the ratio of the inertial over the viscous forces. @@ -115,7 +115,9 @@ $$ $$ where the space, time, and microscopic velocity dependence is omitted and where $$ +\begin{equation} \mathrm{Kn}=\frac{\tau\xi_0}{L}, +\end{equation} $$ is the Knudsen number. -- GitLab