diff --git a/lab3/src/lab3.js b/lab3/src/lab3.js index d5d72d47d196c1118f5bdac90782308b64ecb09a..72fd603cb13ced1b3f982fb4a90bd71b473bcce6 100644 --- a/lab3/src/lab3.js +++ b/lab3/src/lab3.js @@ -151,6 +151,7 @@ function main() { gl.clearColor(0, 0, 0, 1); gl.enable(gl.DEPTH_TEST); const n = initVertexBuffers(gl); + // Get the storage locations let u_viewMatrix = gl.getUniformLocation(gl.program, 'u_viewMatrix') let u_LightDirectional = gl.getUniformLocation(gl.program, 'u_LightDirectional') let u_LightDirection = gl.getUniformLocation(gl.program, 'u_LightDirection') @@ -160,19 +161,21 @@ function main() { let u_MatrixInverseTransposee = gl.getUniformLocation(gl.program, 'u_MatrixInverseTransposee') //positionne light + //light1 point | light2 direction utils pour deplacer light let Light1Pos = [0.0, 2.0, 0.0]; let Light2Pos = [0.0, 2.0, 0.0]; gl.uniform3f(u_LightDirectional, 0.0, 0.0, 0.0); let lightDirection = new Vector3(Light2Pos); gl.uniform3fv(u_LightDirection, lightDirection.normalize().elements); + gl.uniform3f(u_LightPoint, 1.0, 1.0, 1.0); gl.uniform3fv(u_LightPosition, Light1Pos); var viewProjMat = new Matrix4(); viewProjMat.setPerspective(30.0, canvas.width / canvas.height, 1.0, 10.0); - viewProjMat.lookAt(3.0, 3.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); //pos, pt vis, Dir + viewProjMat.lookAt(3.0, 3.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); - var viewMat = new Matrix4(); // Model view projection matrix + var viewMat = new Matrix4(); var mat = new Matrix4(); var matInverseTransposee = new Matrix4(); diff --git a/lab4/lib/cuon-matrix.js b/lab4/lib/cuon-matrix.js new file mode 100644 index 0000000000000000000000000000000000000000..b67a5dd1b998eba54f585cf3849b8c17052d2a35 --- /dev/null +++ b/lab4/lib/cuon-matrix.js @@ -0,0 +1,741 @@ +// cuon-matrix.js (c) 2012 kanda and matsuda +/** + * This is a class treating 4x4 matrix. + * This class contains the function that is equivalent to OpenGL matrix stack. + * The matrix after conversion is calculated by multiplying a conversion matrix from the right. + * The matrix is replaced by the calculated result. + */ + +/** + * Constructor of Matrix4 + * If opt_src is specified, new matrix is initialized by opt_src. + * Otherwise, new matrix is initialized by identity matrix. + * @param opt_src source matrix(option) + */ +var Matrix4 = function(opt_src) { + var i, s, d; + if (opt_src && typeof opt_src === 'object' && opt_src.hasOwnProperty('elements')) { + s = opt_src.elements; + d = new Float32Array(16); + for (i = 0; i < 16; ++i) { + d[i] = s[i]; + } + this.elements = d; + } else { + this.elements = new Float32Array([1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]); + } +}; + +/** + * Set the identity matrix. + * @return this + */ +Matrix4.prototype.setIdentity = function() { + var e = this.elements; + e[0] = 1; e[4] = 0; e[8] = 0; e[12] = 0; + e[1] = 0; e[5] = 1; e[9] = 0; e[13] = 0; + e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + return this; +}; + +/** + * Copy matrix. + * @param src source matrix + * @return this + */ +Matrix4.prototype.set = function(src) { + var i, s, d; + + s = src.elements; + d = this.elements; + + if (s === d) { + return; + } + + for (i = 0; i < 16; ++i) { + d[i] = s[i]; + } + + return this; +}; + +/** + * Multiply the matrix from the right. + * @param other The multiply matrix + * @return this + */ +Matrix4.prototype.concat = function(other) { + var i, e, a, b, ai0, ai1, ai2, ai3; + + // Calculate e = a * b + e = this.elements; + a = this.elements; + b = other.elements; + + // If e equals b, copy b to temporary matrix. + if (e === b) { + b = new Float32Array(16); + for (i = 0; i < 16; ++i) { + b[i] = e[i]; + } + } + + for (i = 0; i < 4; i++) { + ai0=a[i]; ai1=a[i+4]; ai2=a[i+8]; ai3=a[i+12]; + e[i] = ai0 * b[0] + ai1 * b[1] + ai2 * b[2] + ai3 * b[3]; + e[i+4] = ai0 * b[4] + ai1 * b[5] + ai2 * b[6] + ai3 * b[7]; + e[i+8] = ai0 * b[8] + ai1 * b[9] + ai2 * b[10] + ai3 * b[11]; + e[i+12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15]; + } + + return this; +}; +Matrix4.prototype.multiply = Matrix4.prototype.concat; + +/** + * Multiply the three-dimensional vector. + * @param pos The multiply vector + * @return The result of multiplication(Float32Array) + */ +Matrix4.prototype.multiplyVector3 = function(pos) { + var e = this.elements; + var p = pos.elements; + var v = new Vector3(); + var result = v.elements; + + result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + e[12]; + result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + e[13]; + result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[14]; + + return v; +}; + +/** + * Multiply the four-dimensional vector. + * @param pos The multiply vector + * @return The result of multiplication(Float32Array) + */ +Matrix4.prototype.multiplyVector4 = function(pos) { + var e = this.elements; + var p = pos.elements; + var v = new Vector4(); + var result = v.elements; + + result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + p[3] * e[12]; + result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + p[3] * e[13]; + result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14]; + result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15]; + + return v; +}; + +/** + * Transpose the matrix. + * @return this + */ +Matrix4.prototype.transpose = function() { + var e, t; + + e = this.elements; + + t = e[ 1]; e[ 1] = e[ 4]; e[ 4] = t; + t = e[ 2]; e[ 2] = e[ 8]; e[ 8] = t; + t = e[ 3]; e[ 3] = e[12]; e[12] = t; + t = e[ 6]; e[ 6] = e[ 9]; e[ 9] = t; + t = e[ 7]; e[ 7] = e[13]; e[13] = t; + t = e[11]; e[11] = e[14]; e[14] = t; + + return this; +}; + +/** + * Calculate the inverse matrix of specified matrix, and set to this. + * @param other The source matrix + * @return this + */ +Matrix4.prototype.setInverseOf = function(other) { + var i, s, d, inv, det; + + s = other.elements; + d = this.elements; + inv = new Float32Array(16); + + inv[0] = s[5]*s[10]*s[15] - s[5] *s[11]*s[14] - s[9] *s[6]*s[15] + + s[9]*s[7] *s[14] + s[13]*s[6] *s[11] - s[13]*s[7]*s[10]; + inv[4] = - s[4]*s[10]*s[15] + s[4] *s[11]*s[14] + s[8] *s[6]*s[15] + - s[8]*s[7] *s[14] - s[12]*s[6] *s[11] + s[12]*s[7]*s[10]; + inv[8] = s[4]*s[9] *s[15] - s[4] *s[11]*s[13] - s[8] *s[5]*s[15] + + s[8]*s[7] *s[13] + s[12]*s[5] *s[11] - s[12]*s[7]*s[9]; + inv[12] = - s[4]*s[9] *s[14] + s[4] *s[10]*s[13] + s[8] *s[5]*s[14] + - s[8]*s[6] *s[13] - s[12]*s[5] *s[10] + s[12]*s[6]*s[9]; + + inv[1] = - s[1]*s[10]*s[15] + s[1] *s[11]*s[14] + s[9] *s[2]*s[15] + - s[9]*s[3] *s[14] - s[13]*s[2] *s[11] + s[13]*s[3]*s[10]; + inv[5] = s[0]*s[10]*s[15] - s[0] *s[11]*s[14] - s[8] *s[2]*s[15] + + s[8]*s[3] *s[14] + s[12]*s[2] *s[11] - s[12]*s[3]*s[10]; + inv[9] = - s[0]*s[9] *s[15] + s[0] *s[11]*s[13] + s[8] *s[1]*s[15] + - s[8]*s[3] *s[13] - s[12]*s[1] *s[11] + s[12]*s[3]*s[9]; + inv[13] = s[0]*s[9] *s[14] - s[0] *s[10]*s[13] - s[8] *s[1]*s[14] + + s[8]*s[2] *s[13] + s[12]*s[1] *s[10] - s[12]*s[2]*s[9]; + + inv[2] = s[1]*s[6]*s[15] - s[1] *s[7]*s[14] - s[5] *s[2]*s[15] + + s[5]*s[3]*s[14] + s[13]*s[2]*s[7] - s[13]*s[3]*s[6]; + inv[6] = - s[0]*s[6]*s[15] + s[0] *s[7]*s[14] + s[4] *s[2]*s[15] + - s[4]*s[3]*s[14] - s[12]*s[2]*s[7] + s[12]*s[3]*s[6]; + inv[10] = s[0]*s[5]*s[15] - s[0] *s[7]*s[13] - s[4] *s[1]*s[15] + + s[4]*s[3]*s[13] + s[12]*s[1]*s[7] - s[12]*s[3]*s[5]; + inv[14] = - s[0]*s[5]*s[14] + s[0] *s[6]*s[13] + s[4] *s[1]*s[14] + - s[4]*s[2]*s[13] - s[12]*s[1]*s[6] + s[12]*s[2]*s[5]; + + inv[3] = - s[1]*s[6]*s[11] + s[1]*s[7]*s[10] + s[5]*s[2]*s[11] + - s[5]*s[3]*s[10] - s[9]*s[2]*s[7] + s[9]*s[3]*s[6]; + inv[7] = s[0]*s[6]*s[11] - s[0]*s[7]*s[10] - s[4]*s[2]*s[11] + + s[4]*s[3]*s[10] + s[8]*s[2]*s[7] - s[8]*s[3]*s[6]; + inv[11] = - s[0]*s[5]*s[11] + s[0]*s[7]*s[9] + s[4]*s[1]*s[11] + - s[4]*s[3]*s[9] - s[8]*s[1]*s[7] + s[8]*s[3]*s[5]; + inv[15] = s[0]*s[5]*s[10] - s[0]*s[6]*s[9] - s[4]*s[1]*s[10] + + s[4]*s[2]*s[9] + s[8]*s[1]*s[6] - s[8]*s[2]*s[5]; + + det = s[0]*inv[0] + s[1]*inv[4] + s[2]*inv[8] + s[3]*inv[12]; + if (det === 0) { + return this; + } + + det = 1 / det; + for (i = 0; i < 16; i++) { + d[i] = inv[i] * det; + } + + return this; +}; + +/** + * Calculate the inverse matrix of this, and set to this. + * @return this + */ +Matrix4.prototype.invert = function() { + return this.setInverseOf(this); +}; + +/** + * Set the orthographic projection matrix. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @return this + */ +Matrix4.prototype.setOrtho = function(left, right, bottom, top, near, far) { + var e, rw, rh, rd; + + if (left === right || bottom === top || near === far) { + throw 'null frustum'; + } + + rw = 1 / (right - left); + rh = 1 / (top - bottom); + rd = 1 / (far - near); + + e = this.elements; + + e[0] = 2 * rw; + e[1] = 0; + e[2] = 0; + e[3] = 0; + + e[4] = 0; + e[5] = 2 * rh; + e[6] = 0; + e[7] = 0; + + e[8] = 0; + e[9] = 0; + e[10] = -2 * rd; + e[11] = 0; + + e[12] = -(right + left) * rw; + e[13] = -(top + bottom) * rh; + e[14] = -(far + near) * rd; + e[15] = 1; + + return this; +}; + +/** + * Multiply the orthographic projection matrix from the right. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer. + * @return this + */ +Matrix4.prototype.ortho = function(left, right, bottom, top, near, far) { + return this.concat(new Matrix4().setOrtho(left, right, bottom, top, near, far)); +}; + +/** + * Set the perspective projection matrix. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.setFrustum = function(left, right, bottom, top, near, far) { + var e, rw, rh, rd; + + if (left === right || top === bottom || near === far) { + throw 'null frustum'; + } + if (near <= 0) { + throw 'near <= 0'; + } + if (far <= 0) { + throw 'far <= 0'; + } + + rw = 1 / (right - left); + rh = 1 / (top - bottom); + rd = 1 / (far - near); + + e = this.elements; + + e[ 0] = 2 * near * rw; + e[ 1] = 0; + e[ 2] = 0; + e[ 3] = 0; + + e[ 4] = 0; + e[ 5] = 2 * near * rh; + e[ 6] = 0; + e[ 7] = 0; + + e[ 8] = (right + left) * rw; + e[ 9] = (top + bottom) * rh; + e[10] = -(far + near) * rd; + e[11] = -1; + + e[12] = 0; + e[13] = 0; + e[14] = -2 * near * far * rd; + e[15] = 0; + + return this; +}; + +/** + * Multiply the perspective projection matrix from the right. + * @param left The coordinate of the left of clipping plane. + * @param right The coordinate of the right of clipping plane. + * @param bottom The coordinate of the bottom of clipping plane. + * @param top The coordinate of the top top clipping plane. + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.frustum = function(left, right, bottom, top, near, far) { + return this.concat(new Matrix4().setFrustum(left, right, bottom, top, near, far)); +}; + +/** + * Set the perspective projection matrix by fovy and aspect. + * @param fovy The angle between the upper and lower sides of the frustum. + * @param aspect The aspect ratio of the frustum. (width/height) + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.setPerspective = function(fovy, aspect, near, far) { + var e, rd, s, ct; + + if (near === far || aspect === 0) { + throw 'null frustum'; + } + if (near <= 0) { + throw 'near <= 0'; + } + if (far <= 0) { + throw 'far <= 0'; + } + + fovy = Math.PI * fovy / 180 / 2; + s = Math.sin(fovy); + if (s === 0) { + throw 'null frustum'; + } + + rd = 1 / (far - near); + ct = Math.cos(fovy) / s; + + e = this.elements; + + e[0] = ct / aspect; + e[1] = 0; + e[2] = 0; + e[3] = 0; + + e[4] = 0; + e[5] = ct; + e[6] = 0; + e[7] = 0; + + e[8] = 0; + e[9] = 0; + e[10] = -(far + near) * rd; + e[11] = -1; + + e[12] = 0; + e[13] = 0; + e[14] = -2 * near * far * rd; + e[15] = 0; + + return this; +}; + +/** + * Multiply the perspective projection matrix from the right. + * @param fovy The angle between the upper and lower sides of the frustum. + * @param aspect The aspect ratio of the frustum. (width/height) + * @param near The distances to the nearer depth clipping plane. This value must be plus value. + * @param far The distances to the farther depth clipping plane. This value must be plus value. + * @return this + */ +Matrix4.prototype.perspective = function(fovy, aspect, near, far) { + return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far)); +}; + +/** + * Set the matrix for scaling. + * @param x The scale factor along the X axis + * @param y The scale factor along the Y axis + * @param z The scale factor along the Z axis + * @return this + */ +Matrix4.prototype.setScale = function(x, y, z) { + var e = this.elements; + e[0] = x; e[4] = 0; e[8] = 0; e[12] = 0; + e[1] = 0; e[5] = y; e[9] = 0; e[13] = 0; + e[2] = 0; e[6] = 0; e[10] = z; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + return this; +}; + +/** + * Multiply the matrix for scaling from the right. + * @param x The scale factor along the X axis + * @param y The scale factor along the Y axis + * @param z The scale factor along the Z axis + * @return this + */ +Matrix4.prototype.scale = function(x, y, z) { + var e = this.elements; + e[0] *= x; e[4] *= y; e[8] *= z; + e[1] *= x; e[5] *= y; e[9] *= z; + e[2] *= x; e[6] *= y; e[10] *= z; + e[3] *= x; e[7] *= y; e[11] *= z; + return this; +}; + +/** + * Set the matrix for translation. + * @param x The X value of a translation. + * @param y The Y value of a translation. + * @param z The Z value of a translation. + * @return this + */ +Matrix4.prototype.setTranslate = function(x, y, z) { + var e = this.elements; + e[0] = 1; e[4] = 0; e[8] = 0; e[12] = x; + e[1] = 0; e[5] = 1; e[9] = 0; e[13] = y; + e[2] = 0; e[6] = 0; e[10] = 1; e[14] = z; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + return this; +}; + +/** + * Multiply the matrix for translation from the right. + * @param x The X value of a translation. + * @param y The Y value of a translation. + * @param z The Z value of a translation. + * @return this + */ +Matrix4.prototype.translate = function(x, y, z) { + var e = this.elements; + e[12] += e[0] * x + e[4] * y + e[8] * z; + e[13] += e[1] * x + e[5] * y + e[9] * z; + e[14] += e[2] * x + e[6] * y + e[10] * z; + e[15] += e[3] * x + e[7] * y + e[11] * z; + return this; +}; + +/** + * Set the matrix for rotation. + * The vector of rotation axis may not be normalized. + * @param angle The angle of rotation (degrees) + * @param x The X coordinate of vector of rotation axis. + * @param y The Y coordinate of vector of rotation axis. + * @param z The Z coordinate of vector of rotation axis. + * @return this + */ +Matrix4.prototype.setRotate = function(angle, x, y, z) { + var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs; + + angle = Math.PI * angle / 180; + e = this.elements; + + s = Math.sin(angle); + c = Math.cos(angle); + + if (0 !== x && 0 === y && 0 === z) { + // Rotation around X axis + if (x < 0) { + s = -s; + } + e[0] = 1; e[4] = 0; e[ 8] = 0; e[12] = 0; + e[1] = 0; e[5] = c; e[ 9] =-s; e[13] = 0; + e[2] = 0; e[6] = s; e[10] = c; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + } else if (0 === x && 0 !== y && 0 === z) { + // Rotation around Y axis + if (y < 0) { + s = -s; + } + e[0] = c; e[4] = 0; e[ 8] = s; e[12] = 0; + e[1] = 0; e[5] = 1; e[ 9] = 0; e[13] = 0; + e[2] =-s; e[6] = 0; e[10] = c; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + } else if (0 === x && 0 === y && 0 !== z) { + // Rotation around Z axis + if (z < 0) { + s = -s; + } + e[0] = c; e[4] =-s; e[ 8] = 0; e[12] = 0; + e[1] = s; e[5] = c; e[ 9] = 0; e[13] = 0; + e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0; + e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; + } else { + // Rotation around another axis + len = Math.sqrt(x*x + y*y + z*z); + if (len !== 1) { + rlen = 1 / len; + x *= rlen; + y *= rlen; + z *= rlen; + } + nc = 1 - c; + xy = x * y; + yz = y * z; + zx = z * x; + xs = x * s; + ys = y * s; + zs = z * s; + + e[ 0] = x*x*nc + c; + e[ 1] = xy *nc + zs; + e[ 2] = zx *nc - ys; + e[ 3] = 0; + + e[ 4] = xy *nc - zs; + e[ 5] = y*y*nc + c; + e[ 6] = yz *nc + xs; + e[ 7] = 0; + + e[ 8] = zx *nc + ys; + e[ 9] = yz *nc - xs; + e[10] = z*z*nc + c; + e[11] = 0; + + e[12] = 0; + e[13] = 0; + e[14] = 0; + e[15] = 1; + } + + return this; +}; + +/** + * Multiply the matrix for rotation from the right. + * The vector of rotation axis may not be normalized. + * @param angle The angle of rotation (degrees) + * @param x The X coordinate of vector of rotation axis. + * @param y The Y coordinate of vector of rotation axis. + * @param z The Z coordinate of vector of rotation axis. + * @return this + */ +Matrix4.prototype.rotate = function(angle, x, y, z) { + return this.concat(new Matrix4().setRotate(angle, x, y, z)); +}; + +/** + * Set the viewing matrix. + * @param eyeX, eyeY, eyeZ The position of the eye point. + * @param centerX, centerY, centerZ The position of the reference point. + * @param upX, upY, upZ The direction of the up vector. + * @return this + */ +Matrix4.prototype.setLookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) { + var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz; + + fx = centerX - eyeX; + fy = centerY - eyeY; + fz = centerZ - eyeZ; + + // Normalize f. + rlf = 1 / Math.sqrt(fx*fx + fy*fy + fz*fz); + fx *= rlf; + fy *= rlf; + fz *= rlf; + + // Calculate cross product of f and up. + sx = fy * upZ - fz * upY; + sy = fz * upX - fx * upZ; + sz = fx * upY - fy * upX; + + // Normalize s. + rls = 1 / Math.sqrt(sx*sx + sy*sy + sz*sz); + sx *= rls; + sy *= rls; + sz *= rls; + + // Calculate cross product of s and f. + ux = sy * fz - sz * fy; + uy = sz * fx - sx * fz; + uz = sx * fy - sy * fx; + + // Set to this. + e = this.elements; + e[0] = sx; + e[1] = ux; + e[2] = -fx; + e[3] = 0; + + e[4] = sy; + e[5] = uy; + e[6] = -fy; + e[7] = 0; + + e[8] = sz; + e[9] = uz; + e[10] = -fz; + e[11] = 0; + + e[12] = 0; + e[13] = 0; + e[14] = 0; + e[15] = 1; + + // Translate. + return this.translate(-eyeX, -eyeY, -eyeZ); +}; + +/** + * Multiply the viewing matrix from the right. + * @param eyeX, eyeY, eyeZ The position of the eye point. + * @param centerX, centerY, centerZ The position of the reference point. + * @param upX, upY, upZ The direction of the up vector. + * @return this + */ +Matrix4.prototype.lookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) { + return this.concat(new Matrix4().setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)); +}; + +/** + * Multiply the matrix for project vertex to plane from the right. + * @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0". + * @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light. + * @return this + */ +Matrix4.prototype.dropShadow = function(plane, light) { + var mat = new Matrix4(); + var e = mat.elements; + + var dot = plane[0] * light[0] + plane[1] * light[1] + plane[2] * light[2] + plane[3] * light[3]; + + e[ 0] = dot - light[0] * plane[0]; + e[ 1] = - light[1] * plane[0]; + e[ 2] = - light[2] * plane[0]; + e[ 3] = - light[3] * plane[0]; + + e[ 4] = - light[0] * plane[1]; + e[ 5] = dot - light[1] * plane[1]; + e[ 6] = - light[2] * plane[1]; + e[ 7] = - light[3] * plane[1]; + + e[ 8] = - light[0] * plane[2]; + e[ 9] = - light[1] * plane[2]; + e[10] = dot - light[2] * plane[2]; + e[11] = - light[3] * plane[2]; + + e[12] = - light[0] * plane[3]; + e[13] = - light[1] * plane[3]; + e[14] = - light[2] * plane[3]; + e[15] = dot - light[3] * plane[3]; + + return this.concat(mat); +} + +/** + * Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.) + * @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.) + * @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane. + * @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.) + * @return this + */ +Matrix4.prototype.dropShadowDirectionally = function(normX, normY, normZ, planeX, planeY, planeZ, lightX, lightY, lightZ) { + var a = planeX * normX + planeY * normY + planeZ * normZ; + return this.dropShadow([normX, normY, normZ, -a], [lightX, lightY, lightZ, 0]); +}; + +/** + * Constructor of Vector3 + * If opt_src is specified, new vector is initialized by opt_src. + * @param opt_src source vector(option) + */ +var Vector3 = function(opt_src) { + var v = new Float32Array(3); + if (opt_src && typeof opt_src === 'object') { + v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; + } + this.elements = v; +} + +/** + * Normalize. + * @return this + */ +Vector3.prototype.normalize = function() { + var v = this.elements; + var c = v[0], d = v[1], e = v[2], g = Math.sqrt(c*c+d*d+e*e); + if(g){ + if(g == 1) + return this; + } else { + v[0] = 0; v[1] = 0; v[2] = 0; + return this; + } + g = 1/g; + v[0] = c*g; v[1] = d*g; v[2] = e*g; + return this; +}; + +/** + * Constructor of Vector4 + * If opt_src is specified, new vector is initialized by opt_src. + * @param opt_src source vector(option) + */ +var Vector4 = function(opt_src) { + var v = new Float32Array(4); + if (opt_src && typeof opt_src === 'object') { + v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; v[3] = opt_src[3]; + } + this.elements = v; +} diff --git a/lab4/src/lab4.html b/lab4/src/lab4.html index 2bb37bcbd21a70f6bb9acddb83953d93aa5bf516..6ea75756f082dd7329ca4ee60fa368d79f8dcc70 100644 --- a/lab4/src/lab4.html +++ b/lab4/src/lab4.html @@ -1,16 +1,31 @@ <!DOCTYPE html> <html lang="en"> + <head> - <meta charset="UTF-8"> - <title>Lab 4</title> + <meta charset="UTF-8"> + <title>Lab 3</title> </head> + <body onload="main()"> -<canvas width="400" height="600" id="my-canvas"> + + <canvas width="400" height="600" id="my-canvas"> Please use a browser that supports "canvas" </canvas> -<script src="../lib/webgl-utils.js"></script> -<script src="../lib/webgl-debug.js"></script> -<script src="../lib/cuon-utils.js"></script> -<script src="lab4.js"></script> + <p>Point light position:</p> + <p id="pLX">x: 0</p> + <p id="pLY">y: 2</p> + <p id="pLZ">z: 0</p> + + <p>Directional light direction:</p> + <p id="dLX">x: 0</p> + <p id="dLY">y: 2</p> + <p id="dLZ">z: 0</p> + + <script src="../lib/webgl-utils.js"></script> + <script src="../lib/webgl-debug.js"></script> + <script src="../lib/cuon-matrix.js"></script> + <script src="../lib/cuon-utils.js"></script> + <script src="lab4.js"></script> </body> + </html> \ No newline at end of file diff --git a/lab4/src/lab4.js b/lab4/src/lab4.js index 105a227db9e7e4d4abde40b5002e7c75eb860fb4..c08984e0b5ecb6586f5b4055f8d480483c38baaa 100644 --- a/lab4/src/lab4.js +++ b/lab4/src/lab4.js @@ -1,18 +1,386 @@ -// Vertex shader program -const VSHADER_SOURCE = - '\n' + - // TODO: Implement your vertex shader code here - '\n'; +/** + * title : LABO3 + * author : Quentin Berthet + */ + + +var VSHADER_SOURCE = + 'attribute vec3 a_Normal;\n' + // Normal + 'attribute vec4 a_Position;\n' + + 'attribute vec4 a_Color;\n' + + + 'uniform mat4 u_viewMatrix;\n' + + 'uniform mat4 u_Matrix;\n' + + 'uniform mat4 u_MatrixInverseTransposee;\n' + + + 'uniform vec3 u_LightPosition;\n' + + 'varying vec4 v_Color;\n' + + 'varying vec3 v_Normal;\n' + + 'varying vec3 v_LightDirection;\n' + + + 'void main() {\n' + + ' gl_Position = u_viewMatrix * a_Position ;\n' + + ' v_Color = a_Color;\n' + + ' v_Normal = mat3(u_MatrixInverseTransposee) * a_Normal;\n' + + ' vec3 currentPosition = (u_Matrix * a_Position).xyz;\n' + + ' v_LightDirection = u_LightPosition - currentPosition;\n' + + '}\n'; + -// Fragment shader program const FSHADER_SOURCE = - '\n' + - // TODO: Implement your fragment shader code here - '\n'; + 'precision mediump float;\n' + + + 'varying vec4 v_Color;\n' + + 'varying vec3 v_Normal;\n' + + 'varying vec3 v_LightDirection;\n' + + + 'uniform vec3 u_LightDirection;\n' + + 'uniform vec3 u_LightDirectional;\n' + + 'uniform vec3 u_LightPoint;\n' + + + 'void main() {\n' + + ' vec3 normal = normalize(v_Normal.xyz);\n' + + + ' float lightDirectional = dot(normal, u_LightDirection);\n' + + ' float lightPoint = dot(normal, normalize(v_LightDirection));\n' + + + ' gl_FragColor = vec4((u_LightPoint * v_Color.rgb * lightPoint) + (u_LightDirectional * v_Color.rgb * lightDirectional), v_Color.a);\n' + + '}\n'; +const colors1 = new Float32Array([ + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 +]); +const colors2 = new Float32Array([ + 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, + 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, + 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, + 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, + 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, + 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, + 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 +]); + +function initVertexBuffers(gl, opt) { + // This is the model + let normals = new Float32Array([ + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + ]); + + let vertices = new Float32Array([-0.4, -0.4, -0.4, -0.4, -0.4, 0.4, 0.4, -0.4, -0.4, 0.4, -0.4, 0.4, -0.2, 0.4, -0.2, -0.2, 0.4, 0.2, 0.2, 0.4, -0.2, 0.2, 0.4, 0.2, -0.4, -0.4, 0.4, -0.2, 0.4, 0.2, 0.0, -0.4, 0.4, 0.2, 0.4, 0.2, + 0.4, -0.4, 0.4, -0.4, -0.4, 0.4, -0.2, 0.4, 0.2, -0.4, -0.4, 0.0, -0.2, 0.4, -0.2, -0.4, -0.4, -0.4, 0.4, -0.4, -0.4, 0.2, 0.4, -0.2, + 0.4, -0.4, 0.0, 0.2, 0.4, 0.2, 0.4, -0.4, 0.4, -0.4, -0.4, -0.4, -0.2, 0.4, -0.2, 0.0, -0.4, -0.4, 0.2, 0.4, -0.2, 0.4, -0.4, -0.4, -2.0, -0.5, -2.0, -2.0, -0.5, 2.0, 2.0, -0.5, -2.0, 2.0, -0.5, 2.0 + ]); + + let indices = new Uint8Array([ + 0, 2, 1, 2, 3, 1, 4, 5, 6, 5, 7, 6, + 8, 10, 9, 10, 11, 9, 10, 12, 11, 13, 14, 15, + 14, 16, 15, 16, 17, 15, 18, 19, 20, 19, 21, 20, + 21, 22, 20, 23, 24, 25, 24, 26, 25, 26, 27, 25, + 28, 29, 30, 29, 31, 30 + ]); + + const vertexBuffer = gl.createBuffer(); + calculeNormal(vertices, normals, indices); + // copie les info coordonnée, color et normal au buffer + var bufferV = gl.createBuffer(); + gl.bindBuffer(gl.ARRAY_BUFFER, bufferV); + gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW); + var a_attrV = gl.getAttribLocation(gl.program, 'a_Position'); + gl.vertexAttribPointer(a_attrV, 3, gl.FLOAT, false, 0, 0); + gl.enableVertexAttribArray(a_attrV); + computeColor(gl, opt) + var bufferN = gl.createBuffer(); + gl.bindBuffer(gl.ARRAY_BUFFER, bufferN); + gl.bufferData(gl.ARRAY_BUFFER, normals, gl.STATIC_DRAW); + var c_attrN = gl.getAttribLocation(gl.program, 'a_Normal'); + gl.vertexAttribPointer(c_attrN, 3, gl.FLOAT, false, 0, 0); + gl.enableVertexAttribArray(c_attrN); + gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, vertexBuffer); + gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW); + + return indices.length; +} + +function computeColor(gl, opt) { + var bufferC = gl.createBuffer(); + gl.bindBuffer(gl.ARRAY_BUFFER, bufferC); + if (opt == 0) { + gl.bufferData(gl.ARRAY_BUFFER, colors1, gl.STATIC_DRAW); + } else { + gl.bufferData(gl.ARRAY_BUFFER, colors2, gl.STATIC_DRAW); + } + var c_attrC = gl.getAttribLocation(gl.program, 'a_Color'); + gl.vertexAttribPointer(c_attrC, 3, gl.FLOAT, false, 0, 0); + gl.enableVertexAttribArray(c_attrC); +} + +let optColor = true; + +function computeNormal(array1, array2, norm, indices, i) { + for (let j = 0; j < 3; j++) { + norm[indices[i + j] * 3] = (array1[1] * array2[2] - array1[2] * array2[1]); + norm[indices[i + j] * 3 + 1] = (array1[2] * array2[0] - array1[0] * array2[2]); + norm[indices[i + j] * 3 + 2] = (array1[0] * array2[1] - array1[1] * array2[0]); + } +} + +function calculeNormal(vert, norm, indice) { + + for (let i = 0; i < indice.length; i += 3) { + let index1 = 3 * indice[i] + let index2 = 3 * indice[i + 1] + let index3 = 3 * indice[i + 2] + + let el1 = [vert[index1], vert[index1 + 1], vert[index1 + 2]]; + let el2 = [vert[index2], vert[index2 + 1], vert[index2 + 2]]; + let el3 = [vert[index3], vert[index3 + 1], vert[index3 + 2]]; + + let result1 = []; + for (let i = 0; i < el2.length; i++) { + result1.push(el2[i] - el1[i]); + } + let result2 = []; + for (let i = 0; i < el3.length; i++) { + result2.push(el3[i] - el1[i]); + } + computeNormal(result1, result2, norm, indice, i) + + } + +} + function main() { - // Retrieve <canvas> element - const canvas = document.getElementById('my-canvas'); + const canvas = document.getElementById('my-canvas'); + const gl = getWebGLContext(canvas); + initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE) + gl.clearColor(0, 0, 0, 1); + gl.enable(gl.DEPTH_TEST); + var n = initVertexBuffers(gl, 1); + + // Get the storage locations + let u_viewMatrix = gl.getUniformLocation(gl.program, 'u_viewMatrix') + let u_LightDirectional = gl.getUniformLocation(gl.program, 'u_LightDirectional') + let u_LightDirection = gl.getUniformLocation(gl.program, 'u_LightDirection') + let u_LightPoint = gl.getUniformLocation(gl.program, 'u_LightPoint') + let u_LightPosition = gl.getUniformLocation(gl.program, 'u_LightPosition') + let u_Matrix = gl.getUniformLocation(gl.program, 'u_Matrix') + let u_MatrixInverseTransposee = gl.getUniformLocation(gl.program, 'u_MatrixInverseTransposee') + + //positionne light + //light1 point | light2 direction utils pour deplacer light + let Light1Pos = [0.0, 2.0, 0.0]; + let Light2Pos = [0.0, 2.0, 0.0]; + gl.uniform3f(u_LightDirectional, 0.0, 0.0, 0.0); + let lightDirection = new Vector3(Light2Pos); + gl.uniform3fv(u_LightDirection, lightDirection.normalize().elements); + + gl.uniform3f(u_LightPoint, 1.0, 1.0, 1.0); + gl.uniform3fv(u_LightPosition, Light1Pos); + + var viewProjMat = new Matrix4(); + viewProjMat.setPerspective(30.0, canvas.width / canvas.height, 1.0, 10.0); + viewProjMat.lookAt(3.0, 3.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); + + var viewMat = new Matrix4(); + var mat = new Matrix4(); + var matInverseTransposee = new Matrix4(); + + var keysMove = [0.0, 0.0]; + var render = function() { + + if (optColor) { + computeColor(gl, 1) + } else { + computeColor(gl, 0) + } + gl.uniform3fv(u_LightPosition, Light1Pos); + //Directional light direction + lightDirection = new Vector3(Light2Pos); + gl.uniform3fv(u_LightDirection, lightDirection.normalize().elements); + + + mat.setRotate(keysMove[0], 1.0, 0.0, 0.0); + mat.rotate(angle , 0.0, 1.0 ,0.0) + mat.rotate(keysMove[1], 0.0, 1.0, 0.0); + viewMat.set(viewProjMat).multiply(mat); + gl.uniformMatrix4fv(u_viewMatrix, false, viewMat.elements); + gl.uniformMatrix4fv(u_Matrix, false, mat.elements); + matInverseTransposee.setInverseOf(mat).transpose() + gl.uniformMatrix4fv(u_MatrixInverseTransposee, false, matInverseTransposee.elements); + drawScene(gl, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render); + }; + actionsManager(document, gl, keysMove, u_LightPoint, u_LightDirectional, Light1Pos, Light2Pos, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render); + render(0); + +} +var angle = 0; + +function drawScene(gl, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render) { + gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); + + gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0); + + mat.translate(0, 0.80, 0); + mat.rotate(180, 1.0, 0.0, 0.0); + viewMat.set(viewProjMat).multiply(mat) + gl.uniformMatrix4fv(u_viewMatrix, false, viewMat.elements); + gl.uniformMatrix4fv(u_Matrix, false, mat.elements); + + matInverseTransposee.setInverseOf(mat).transpose() + gl.uniformMatrix4fv(u_MatrixInverseTransposee, false, matInverseTransposee.elements); + gl.drawElements(gl.TRIANGLES, n - 6, gl.UNSIGNED_BYTE, 0); + requestAnimationFrame(render); +} +var cmp = 0; + +function check(gl, x, y, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render) { + var picked = false; + drawScene(gl, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render); + var pixels = new Uint8Array(4); // Array for storing the pixel value + gl.readPixels(x, y, 1, 1, gl.RGBA, gl.UNSIGNED_BYTE, pixels); + console.log(pixels); + if (pixels[0] != 0 || pixels[1] != 0 || pixels[2] != 0) { + cmp += 1 + picked = true + if (cmp % 2 == 0) { + console.log(cmp); + optColor = true + angle += 20; + if (angle >= 360) { + angle = 0 + } + } else { + optColor = false + angle += 40; + if (angle >= 360) { + angle = 0 + } + } + } + drawScene(gl, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render); + + //drawScene(gl, programInfo, buffers); + return picked; +} +var roh = 0; +var gama = 180; + + +let on = true; + +function actionsManager(document, gl, keysMove, u_LightPoint, u_LightDirectional, Light1Pos, Light2Pos, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render) { + switchLight = true; + document.onmousedown = function(ev) { // Mouse is pressed + var x = ev.clientX, + y = ev.clientY; + var rect = ev.target.getBoundingClientRect(); + // If pressed position is inside <canvas>, check if it is above object + var axe_x = x - rect.left; + var axe_y = rect.bottom - y; + console.log(axe_x, axe_y); + var picked = check(gl, axe_x, axe_y, n, viewProjMat, mat, u_viewMatrix, viewMat, u_Matrix, u_MatrixInverseTransposee, matInverseTransposee, render); + if (picked) { + + requestAnimationFrame(render); + } + } + + document.onkeydown = function(event) { + switch (event.code) { + case "KeyJ": + if (on) { + { + console.log("1"); + gl.uniform3f(u_LightPoint, 0.0, 0.0, 0.0); + gl.uniform3f(u_LightDirectional, 1.0, 1.0, 1.0); + switchLight = false; + on = false; + } + + } else { - // TODO: Complete with your code here -} \ No newline at end of file + console.log("2"); + gl.uniform3f(u_LightPoint, 1.0, 1.0, 1.0); + gl.uniform3f(u_LightDirectional, 0.0, 0.0, 0.0); + switchLight = true; + on = true; + } + break; + case "KeyE": + if (switchLight) { + Light1Pos[0] += 0.1; + } else { + Light2Pos[0] += 0.1; + } + break; + case "KeyQ": + if (switchLight) { + Light1Pos[0] -= 0.1; + } else { + Light2Pos[0] -= 0.1; + } + break; + case "KeyS": + if (switchLight) { + Light1Pos[1] += 0.1; + } else { + Light2Pos[1] += 0.1; + } + break; + case "KeyW": + if (switchLight) { + Light1Pos[1] -= 0.1; + } else { + Light2Pos[1] -= 0.1; + } + break; + case "KeyA": + if (switchLight) { + Light1Pos[2] -= 0.1; + } else { + Light2Pos[2] -= 0.1; + } + break; + case "KeyD": + if (switchLight) { + Light1Pos[2] += 0.1; + } else { + Light2Pos[2] += 0.1; + } + break; + case "KeyF": + keysMove[1] += 1; + break; + case "KeyH": + keysMove[1] -= 1; + break; + case "KeyT": + keysMove[0] += 1; + break; + case "KeyG": + keysMove[0] -= 1; + break; + } + document.getElementById("pLX").innerHTML = "x: " + Math.round(Light1Pos[0] * 10); + document.getElementById("pLY").innerHTML = "y: " + Math.round(Light1Pos[1] * 10); + document.getElementById("pLZ").innerHTML = "z: " + Math.round(Light1Pos[2] * 10); + document.getElementById("dLX").innerHTML = "x: " + Math.round(Light2Pos[0] * 10); + document.getElementById("dLY").innerHTML = "y: " + Math.round(Light2Pos[1] * 10); + document.getElementById("dLZ").innerHTML = "z: " + Math.round(Light2Pos[2] * 10); + } +}; \ No newline at end of file