diff --git a/slides/cours_8.md b/slides/cours_8.md
index 4c2d63ac656649ef14b5a198f59e97505f5fcea7..2e194e37a761bdfab180c6f7c75d3a8bbe3b5ddc 100644
--- a/slides/cours_8.md
+++ b/slides/cours_8.md
@@ -189,16 +189,16 @@ void placer_devant(board, li, co);
 
 ```C
 // Calcule le nombre de solutions au problème des <n> reines
-nbr_solutions(board, column, counter)
-    // pour chaque ligne 
-        // si la case libre
-            // si column < n - 1
-                // copier dans un nouveau board, y poser une reine 
-                //     et mettre à jour ce nouveau board
-                // nbr_solutions(nouveau_board, column+1, counter)
-            // sinon
-                // on a posé la n-ème et on a gagné
-                // counter += 1
+nbr_solutions(board, column, count)
+   // pour chaque ligne 
+       // si la case libre
+          // si column < n - 1
+              // copier dans un "new" board, y poser  
+              //   une reine et mettre à jour ce "new" board
+              // nbr_solutions(new_board, column+1, count)
+          // sinon
+              // on a posé la n-ème et on a gagné
+              // count += 1
 ```
 
 # Le code du problème des 8 reines (3/N)
@@ -225,14 +225,14 @@ placer_devant(board, ligne, colonne)
 
 ```C
 // Calcule le nombre de solutions au problème des <N> reines
-void nb_sol(int n, bool board_in[n][n], int co, int *ptr_cpt) {
+void nb_sol(int n, bool board[n][n], int co, int *ptr_cpt) {
     for (int li = 0; li < n; li++) {
         if (board_in[li][co]) {
-            if (co < n - 1) {
-                bool board[n][n]; // alloué à chaque nouvelle tentative
-                copy(n, board_in, board);         
-                prises_devant(n, board, li, co);
-                nb_sol(n, board, co+1, ptr_cpt);
+            if (co < n-1) {
+                bool new_board[n][n]; // alloué à chaque nouvelle tentative
+                copy(n, new_board_in, board);         
+                prises_devant(n, new_board, li, co);
+                nb_sol(n, new_board, co+1, ptr_cpt);
             } else {
                 *ptr_cpt = (*ptr_cpt)+1;
             }
@@ -253,14 +253,14 @@ void nb_sol(int n, bool board_in[n][n], int co, int *ptr_cpt) {
 // prises sur la droite droite par une reine placée en <board(li,co)>
 void prises_devant(int n, bool board[n][n], int li, int co) {
     board[li][co] = false; // position de la reine
-    for (int j = 1; j < n - co; j++) {
+    for (int j = 1; j < n-co; j++) {
         // horizontale et diagonales à droite de la reine
         if (j <= li) {
-            board[li - j][co + j] = false;
+            board[li-j][co+j] = false;
         }
-        board[li][co + j] = false;
-        if (li + j < n) {
-            board[li + j][co + j] = false;
+        board[li][co+j] = false;
+        if (li+j < n) {
+            board[li+j][co+j] = false;
         }
     }
 }
@@ -531,7 +531,8 @@ Soit `tab` le tableau à trier:
 ```C
 Pour tous les i = 0 à N-1
     
-    tant que (tab[i] > que le sommet de G ou tab[i] < sommet de D) {
+    tant que (tab[i] > que le sommet de G 
+              ou tab[i] < sommet de D) {
         dépiler G dans D ou de D dans G
     }