Skip to content
Snippets Groups Projects
Verified Commit d024a9aa authored by orestis.malaspin's avatar orestis.malaspin
Browse files

début précédence

parent 106d6ceb
No related branches found
No related tags found
No related merge requests found
Pipeline #18883 failed
......@@ -638,7 +638,7 @@ $$
:::: column
## Que vaut $D^{(0)}$?
## Que vaut $D^{(0)}$ (3min)?
. . .
......@@ -656,14 +656,304 @@ $$
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(0)}$?
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(1)}$ (3min)?
. . .
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & \mathbf{6} & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \mathbf{3} & \mathbf{5} & 0 & \mathbf{4} \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(0)}$
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(1)}$ (3min)?
. . .
$$
D^{(1)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & \mathbf{6} & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \mathbf{3} & \mathbf{5} & 0 & \mathbf{4} \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
## Exemple
$$
D_{42}^{(1)}=D_{41}^{(0)}+D_{12}^{(0)}=1+2<\infty.
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(1)}$
$$
D^{(1)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(2)}$ (3min)?
. . .
$$
D^{(2)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
\mathbf{4} & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(2)}$
$$
D^{(2)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(3)}$ (3min)?
. . .
$$
D^{(3)}=\begin{bmatrix}
0 & 2 & 4 & \mathbf{8} & 3 \\
2 & 0 & 6 & \mathbf{10} & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(3)}$
$$
D^{(3)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(4)}$ (3min)?
. . .
$$
D^{(4)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\mathbf{2} & \mathbf{4} & \mathbf{6} & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(4)}$
$$
D^{(4)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
2 & 4 & 6 & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(5)}$ (3min)?
. . .
$$
D^{(5)}=\begin{bmatrix}
0 & 2 & 4 & \mathbf{4} & 3 \\
2 & 0 & 6 & \mathbf{2} & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
2 & 4 & 6 & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall
## The pseudo-code (10min)
* Quelle structure de données?
* Quelle initialisation?
* Quel est le code pour
* Quel est le code pour le calcul de la matrice $D$?
# Algorithme de Floyd--Warshall
## The pseudo-code
* Quelle structure de données?
```C
int distance[n][n];
```
. . .
* Quelle initialisation?
```C
matrice ini_floyd_warshall(distance, n, w)
pour i de 1 à n
pour j de 1 à n
distance[i][j] = w(i,j)
retourne distance
```
# Algorithme de Floyd--Warshall
## The pseudo-code
* Quel est le code pour le calcul de la matrice $D$?
```C
matrice floyd_warshall(distance, n, w)
pour k de 1 à n
pour i de 1 à n
pour j de 1 à n
distance[i][j] = min(distance[i][j], distance[i][k] + distance[k][j])
retourne distance
```
# Algorithme de Floyd--Warshall
## La matrice de précédence
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment