Skip to content
Snippets Groups Projects
Commit 35fae812 authored by Arian Ubuntu's avatar Arian Ubuntu
Browse files

Correction equation solution 17

parent 034c62c9
No related branches found
No related tags found
No related merge requests found
Pipeline #29597 canceled
......@@ -456,8 +456,8 @@ F=F_{4\rightarrow 3},\\
\end{align}
Nous connaissons déjà la direction de la force et donc dans quelle direction se trouvera $Q_4$ (la direction pointée par l'angle $\theta_4$). La première condition nous permet finalement de calculer la distance entre $Q_3$ et $Q_4$, $r_{34}$
\begin{align}
F&=k\frac{Q_3Q_4}{r_{34}^2}=\frac{9\cdot 10^9\cdot 50\cdot 10^{-6}\cdot 65\cdot 10^{6-}}{r_{34}^2},\nonumber\\
r_{34}^2&=k\frac{Q_3Q_4}{r_{34}^2}=\frac{29.2}{280},\nonumber\\
F&=k\frac{Q_3Q_4}{r_{34}^2}=\frac{9\cdot 10^9\cdot 50\cdot 10^{-6}\cdot 65\cdot 10^{-6}}{r_{34}^2},\nonumber\\
r_{34}^2&=k\frac{Q_3Q_4}{F}=\frac{29.2}{280},\nonumber\\
r_{34}&=0.32\mathrm{m}.
\end{align}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment