Select Git revision
draw_tests.c
break_encryption.py 3.14 KiB
"""
Project : Travail Pratique RSA
Authors : Gawen ACKERMANN, Florian BURGENER, Quentin FASLER, Dario GENGA
Date : 2021-2022
"""
import math
def get_bezout_coefficients(a, b):
"""Find the Bézout coefficients for the numbers a and b.
Args:
a (int): The number a
b (int): The number b.
Returns:
tuple: The Bézout coefficients.
"""
r = [a, b]
x = [1, 0]
y = [0, 1]
q = [0, 0]
i = 1
while r[i] > 0:
i += 1
r.append(r[i - 2] % r[i - 1])
q.append(int(r[i - 2] / r[i - 1]))
if r[i] > 0:
x.append(x[i - 2] - q[i] * x[i - 1])
y.append(y[i - 2] - q[i] * y[i - 1])
return x[-1], y[-1]
def modular_inverse(a, n):
"""Calculates the modular inverse of a number a modulo n.
Args:
a (int): The number to be reversed.
n (int): The modulo.
Returns:
int: The inverted number.
"""
coefficients = get_bezout_coefficients(a, n)
if a * coefficients[0] % n == 1:
return coefficients[0] % n
return None
def modular_pow(base, exponent, modulus):
"""Computes the modular exponentiation.
Args:
base (int): Power base.
exponent (int): Power exponent.
modulus (int): The modulos.
Returns:
int: The result of the exponentiation.
"""
if modulus == 1:
return 0
result = 1
base %= modulus
while exponent > 0:
if exponent % 2 == 1:
result = (result * base) % modulus
exponent = exponent >> 1
base = (base * base) % modulus
return result
def break_encryption(n):
"""Breaks RSA encryption using the brute force technique.
Args:
n (int): The component of the public key which is the product of p and q.
Returns:
tuple: The prime numbers p and q.
"""
range_low = 3
range_high = int(math.ceil(math.sqrt(n)))
for x in [2] + list(range(range_low, range_high, 2)):
if n % x == 0:
return (x, n // x)
return None
def main():
e = 5249
n = 1653973759
encrypted_data = [1511395078, 260436590, 1630654276, 1190458520, 790492067, 515550941, 297140366, 755589582, 647075331, 1191707844, 901889430, 660956124, 1500654109, 984322720, 1275630738, 1244853107, 1445928913, 1312523810, 265093060, 933013993, 1375592761, 195866064, 534502441, 928270408, 166404031, 621272622, 1304987439, 905393335, 55120151, 772595721, 506609577, 1172751778, 162439707, 233959833, 1468937795, 1358701120, 901889430, 495995733, 1524090698, 1043509086, 934992314, 1545639379, 1061595897, 1348452679, 1135067876, 905393335, 621272622, 55120151, 233959833, 1220119699, 708711266, 517797467, 195866064, 1579814353, 412378626, 498875436, 445485200, 7656659]
p, q = break_encryption(n)
# Calculation of the decryption key.
d = modular_inverse(e, (p - 1) * (q - 1))
decrypted_data = []
for x in encrypted_data:
decrypted_data.append(modular_pow(x, d, n))
decoded_data = ""
for x in decrypted_data:
decoded_data += x.to_bytes((x.bit_length() + 7) // 8, "little").decode("utf-8")
print(decoded_data)
if __name__ == "__main__":
main()