Skip to content
Snippets Groups Projects
Verified Commit a2bf122c authored by orestis.malaspin's avatar orestis.malaspin
Browse files

removed file and merge with cours_16

parent 8967896b
No related branches found
No related tags found
No related merge requests found
--- ---
title: "Arbres" title: "Arbres et tri par tas"
date: "2022-03-02" date: "2022-03-02"
patat: patat:
eval: eval:
...@@ -218,3 +218,409 @@ flowchart TB; ...@@ -218,3 +218,409 @@ flowchart TB;
::: :::
# Trier un tableau à l'aide d'un arbre binaire
* Tableau représenté comme un arbre binaire.
* Aide à comprendre "comment" trier, mais on ne construit jamais l'arbre.
* Complexité $O(N\log_2 N)$ en moyenne et grande stabilité (pas de cas
dégénérés).
# Lien entre arbre et tableau
* La racine de l'arbre set le premier élément du tableau.
* Les deux fils d'un noeud d'indice $i$, ont pour indices $2i+1$ et $2i+2$:
* Les fils du noeud $i=0$, sont à $2\cdot 0+1=1$ et $2\cdot 0+2=2$.
* Les fils du noeud $i=1$, sont à $2\cdot 1+1=3$ et $2\cdot 1+2=4$.
* Les fils du noeud $i=2$, sont à $2\cdot 2+2=5$ et $2\cdot 1+2=6$.
* Les fils du noeud $i=3$, sont à $2\cdot 3+1=7$ et $2\cdot 3+2=8$.
* Un élément d'indice $i$ a pour parent l'élément $(i-1)/2$ (division entière):
* Le parent du noeud $i=8$ est $(8-1)/2=3$.
* Le parent du noeud $i=7$ est $(7-1)/2=3$.
# Visuellement
::: columns
:::: column
* Où vont les indices correspondant du tableau?
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0(( ))-->id1(( ));
id0-->id2(( ));
id1-->id3(( ));
id1-->id4(( ));
id2-->id5(( ));
id2-->id6(( ));
id3-->id7(( ));
id3-->id8(( ));
id4-->id9(( ));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
* Les flèche de gauche à droite, parent -> enfants.
* Les flèche de droite à gauche, enfants -> parent.
![Dualité tableau arbre binaire.](figs/heap_tree.svg)
::::
:::
**Propriétés:**
1. les feuilles sont toutes sur l'avant dernier ou dernier niveau.
2. les feuilles de profondeur maximale sont "tassée" à gauche.
# Le tas (ou heap)
## Définition
* Un arbre est un tas, si la valeur de chacun de ses descendants est inférieure
ou égale à sa propre valeur.
## Exemples (ou pas)
```
16 8 14 6 2 10 12 4 5 # Tas
16 14 8 6 2 10 12 4 5 # Non-tas, 10 > 8 et 12 > 8
```
## Exercices (ou pas)
```
19 18 12 12 17 1 13 4 5 # Tas ou pas tas?
19 18 16 12 17 1 12 4 5 # Tas ou pas tas?
```
. . .
```
19 18 12 12 17 1 13 4 5 # Pas tas! 13 > 12
19 18 16 12 17 1 12 4 5 # Tas!
```
# Exemple de tri par tas (1/N)
```
| 1 | 16 | 5 | 12 | 4 | 2 | 8 | 10 | 6 | 7 |
```
::: columns
:::: column
* Quel est l'arbre que cela représente?
. . .
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((4));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((7));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* On commence à l'indice $N/2 = 5$: `7`.
* `7 > 4` (enfant `>` parent).
* intervertir `4` et `7`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
. . .
```
* *
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
# Exemple de tri par tas (2/N)
```
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* On continue à l'indice $N/2-1 = 4$: `12`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* On continue à l'indice $N/2-2 = 3$: `5`.
* `5 < 8`, échanger `8` et `5` (aka `max(2, 5, 8)`)
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
. . .
```
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (3/N)
```
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-1 = 4$: `12`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-2 = 3$: `5`.
* `5 < 8`, `5 <=> max(2, 5, 8)`
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* *
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (4/N)
```
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-3 = 1$: `16`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-4 = 1$: `1`.
* `1 < 16 && 1 < 8`, `1 <=> max(1, 16, 8)`
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((1));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* *
| 16 | 1 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (5/N)
```
| 16 | 1 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Recommencer avec `1`.
* `1 <=> max(1, 12, 7)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((12));
id0-->id2((5));
id1-->id3((1));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Recommencer avec `1`.
* `1 <=> max(1, 10, 6)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((12));
id0-->id2((8));
id1-->id3((10));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((1));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* * *
| 16 | 12 | 8 | 10 | 7 | 2 | 5 | 1 | 6 | 4 |
```
---
title: "Le tri par tas"
date: "2022-03-02"
---
# Trier un tableau à l'aide d'un arbre binaire
* Tableau représenté comme un arbre binaire.
* Aide à comprendre "comment" trier, mais on ne construit jamais l'arbre.
* Complexité $O(N\log_2 N)$ en moyenne et grande stabilité (pas de cas
dégénérés).
# Lien entre arbre et tableau
* La racine de l'arbre set le premier élément du tableau.
* Les deux fils d'un noeud d'indice $i$, ont pour indices $2i+1$ et $2i+2$:
* Les fils du noeud $i=0$, sont à $2\cdot 0+1=1$ et $2\cdot 0+2=2$.
* Les fils du noeud $i=1$, sont à $2\cdot 1+1=3$ et $2\cdot 1+2=4$.
* Les fils du noeud $i=2$, sont à $2\cdot 2+2=5$ et $2\cdot 1+2=6$.
* Les fils du noeud $i=3$, sont à $2\cdot 3+1=7$ et $2\cdot 3+2=8$.
* Un élément d'indice $i$ a pour parent l'élément $(i-1)/2$ (division entière):
* Le parent du noeud $i=8$ est $(8-1)/2=3$.
* Le parent du noeud $i=7$ est $(7-1)/2=3$.
# Visuellement
::: columns
:::: column
* Où vont les indices correspondant du tableau?
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0(( ))-->id1(( ));
id0-->id2(( ));
id1-->id3(( ));
id1-->id4(( ));
id2-->id5(( ));
id2-->id6(( ));
id3-->id7(( ));
id3-->id8(( ));
id4-->id9(( ));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
* Les flèche de gauche à droite, parent -> enfants.
* Les flèche de droite à gauche, enfants -> parent.
![Dualité tableau arbre binaire.](figs/heap_tree.svg)
::::
:::
**Propriétés:**
1. les feuilles sont toutes sur l'avant dernier ou dernier niveau.
2. les feuilles de profondeur maximale sont "tassée" à gauche.
# Le tas (ou heap)
## Définition
* Un arbre est un tas, si la valeur de chacun de ses descendants est inférieure
ou égale à sa propre valeur.
## Exemples (ou pas)
```
16 8 14 6 2 10 12 4 5 # Tas
16 14 8 6 2 10 12 4 5 # Non-tas, 10 > 8 et 12 > 8
```
## Exercices (ou pas)
```
19 18 12 12 17 1 13 4 5 # Tas ou pas tas?
19 18 16 12 17 1 12 4 5 # Tas ou pas tas?
```
. . .
```
19 18 12 12 17 1 13 4 5 # Pas tas! 13 > 12
19 18 16 12 17 1 12 4 5 # Tas!
```
# Exemple de tri par tas (1/N)
```
| 1 | 16 | 5 | 12 | 4 | 2 | 8 | 10 | 6 | 7 |
```
::: columns
:::: column
* Quel est l'arbre que cela représente?
. . .
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((4));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((7));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* On commence à l'indice $N/2 = 5$: `7`.
* `7 > 4` (enfant `>` parent).
* intervertir `4` et `7`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
. . .
```
* *
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
# Exemple de tri par tas (2/N)
```
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* On continue à l'indice $N/2-1 = 4$: `12`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* On continue à l'indice $N/2-2 = 3$: `5`.
* `5 < 8`, échanger `8` et `5` (aka `max(2, 5, 8)`)
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
. . .
```
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (3/N)
```
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-1 = 4$: `12`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-2 = 3$: `5`.
* `5 < 8`, `5 <=> max(2, 5, 8)`
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* *
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (4/N)
```
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-3 = 1$: `16`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-4 = 1$: `1`.
* `1 < 16 && 1 < 8`, `1 <=> max(1, 16, 8)`
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((1));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* *
| 16 | 1 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (5/N)
```
| 16 | 1 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Recommencer avec `1`.
* `1 <=> max(1, 12, 7)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((12));
id0-->id2((5));
id1-->id3((1));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Recommencer avec `1`.
* `1 <=> max(1, 10, 6)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((12));
id0-->id2((8));
id1-->id3((10));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((1));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* * *
| 16 | 12 | 8 | 10 | 7 | 2 | 5 | 1 | 6 | 4 |
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment