Skip to content
Snippets Groups Projects
Verified Commit 7dcd42f3 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

added cours 14

parent bf3d12a8
Branches
No related tags found
No related merge requests found
---
title: "Tables de hachage"
date: "2022-01-19"
patat:
eval:
tai:
command: fish
fragment: false
replace: true
ccc:
command: fish
fragment: false
replace: true
images:
backend: auto
---
# Rappel sur les tables de hachage (1/N)
## Définition? Qui se souvient?
. . .
Structure de données abstraite où chaque *valeur* (ou élément) est associée à une *clé* (ou
argument).
On parle de paires *clé-valeur* (*key-value pairs*).
## Donnez des exemples de telles paires
. . .
* Annuaire (nom-téléphone),
* Catalogue (objet-prix),
* Table de valeur fonctions (nombre-nombre),
* Index (nombre-page)
* ...
# Rappel sur les tables de hachage (1/N)
## Opérations principales sur les tables
* Insertion d'élément (`insert(clé, valeur)`{.C}), insère la paire `clé-valeur`
* Consultation (`get(clé)`{.C}), retourne la `valeur` correspondant à `clé`
* Suppression (`remove(clé)`{.C}), supprime la paire `clé-valeur`
## Transformation de clé (hashing)
* Format: 106.3123.8492.13
```
Numéro AVS | Nom
0000000000000 | -------
... | ...
1063123849213 | Paul
... | ...
3066713878328 | Orestis
... | ...
9999999999999 | -------
```
* Nombre de numéros >> nombre d'entrées.
# Fonctions de transformation de clé (hash functions)
* La table est représentée avec un tableau.
* La taille du tableau est beaucoup plus petit que le nombre de clés.
* On produit un indice du tableau à partir d'une clé:
$$
h(key) = n,\quad n\in\mathbb{N}.
$$
En français: on transforme `key` en nombre entier qui sera l'indice dans le
tableau correspondant à `key`.
## La fonction de hash
* La taille du domaine des clés est beaucoup plus grand que le domaine des
indices.
* Plusieurs indices peuvent correspondre à la **même clé**:
* Il faut traiter les **collisions**.
* L'ensemble des indices doit être plus petit ou égal à la taille de la table.
## Une bonne fonction de hash
* Distribue uniformément les clés sur l'ensemble des indices.
# Fonctions de transformation de clés: exemple
## Méthode par division modulo
Taille de l'index: `N` chiffres.
```
h(key) = key % N.
```
## Quelle doit être la taille de la table?
. . .
Oui comme vous le pensiez au moins `N`.
# Traitement des collisions
## La collision
```
key1 != key2, h(key1) == h(key2)
```
## Traitement (une idée?)
. . .
* La première clé occupe la place prévue dans le tableau.
* La deuxième (troisième, etc.) est placée ailleurs de façon **déterministe**.
Dans ce qui suit la taille de la table est `table_size`.
# La méthode séquentielle
\footnotesize
* Quand l'index est déjà occupé on regarde sur la position suivante, jusqu'à en
trouver une libre.
```C
index = h(key);
while (table[index].state == OCCUPIED && table[index].key != key) {
index = (index + 1) % table_size; // attention à pas dépasser
}
table[index].key = key;
table[index].state = OCCUPIED;
```
# Méthode de chaînage
## Comment ça marche?
* Chaque index de la table contient un pointeur vers une liste chaînée
contenant les paires clés-valeurs.
## Un petit dessin
```
```
# Méthode de chaînage
## Exemple
On hash avec la fonction `h(key) = key % 11` (`key` est le numéro de la lettre
de l'alphabet)
```
U | N | E | X | E | M | P | L | E | D | E | T | A | B | L | E
10 | 3 | 5 | 2 | 5 | 2 | 5 | 1 | 5 | 4 | 5 | 9 | 1 | 2 | 1 | 5
```
## Comment on représente ça? (à vous)
. . .
![La méthode de chaînage](figs/fig_hash.png){width=80%}
# Exercice 1
* Construire une table à partir de la liste de clés suivante:
```
R, E, C, O, U, P, A, N, T
```
* On suppose que la table est initialement vide, de taille $n = 13$.
* Utiliser la fonction $h1(k)= k \mod 13$ où k est la $k$-ème lettre de l'alphabet et un traitement séquentiel des collisions.
# Exercice 2
* Reprendre l'exercice 1 et utiliser la technique de double hachage pour traiter
les collisions avec
\begin{align*}
h_1(k)&=k\mod 13,\\
h_2(k)&=1+(k\mod 11).
\end{align*}
* La fonction de hachage est donc $h(k)=(h(k)+h_2(k)) \% 13$ en cas de
collision.
# Exercice 3
* Stocker les numéros de téléphones internes d'une entreprise suivants dans un
tableau de 10 positions.
* Les numéros sont compris entre 100 et 299.
* Soit $N$ le numéro de téléphone, la fonction de hachage est
$$
h(N)=N\mod 10.
$$
* La fonction de gestion des collisions est
$$
C_1(N,i)=(h(N)+3\cdot i)\mod 10.
$$
* Placer 145, 167, 110, 175, 210, 215 (mettre son état à occupé).
* Supprimer 175 (rechercher 175, et mettre son état à supprimé).
* Rechercher 35.
* Les cases ni supprimées, ni occupées sont vides.
* Expliquer se qui se passe si on utilise?
$$
C_1(N,i)=(h(N)+5\cdot i)\mod 10.
$$
# Préambule
\small
* On considère pas le cas du chaînage en cas de collisions.
* L'insertion est construite avec une forme du type
```C
index = h(key);
while (table[index].state == OCCUPIED
&& table[index].key != key) {
index = (index + k) % table_size; // attention à pas dépasser
}
table[index].key = key;
table[index].state = OCCUPIED;
```
\normalsize
* Gestion de l'état d'une case *explicite*
```C
typedef enum {EMPTY, OCCUPIED, DELETED} state;
```
# L'insertion
## Pseudocode?
. . .
```C
insert(table, key, value) {
index = hash de la clé;
index =
si "index" est déjà "occupé"
et la clé correspondante n'est pas "key"
alors gérer la collision;
changer l'état de la case "index" à "occupé";
changer la valeur de la case "index" à "value";
}
```
# La suppression
## Pseudocode?
. . .
```C
value_t remove(table, key) {
index = hash de la clé;
tant que l'état de la case n'est pas "vide"
si "index" est "occupé" et la clé est "key"
changer l'état de la case à "supprimé"
sinon
index = rehash
}
```
# La recherche
## Pseudocode?
. . .
```C
bool search(table, key, value) {
index = hash de la clé;
tant que l'état de la case n'est pas "vide"
si "index" est "occupé" et la clé est "key"
retourner vrai
sinon
index = rehash
}
```
# Écrivons le code!
* Mais avant:
* Quelles sont les structures de données dont nous avons besoin?
* Y a-t-il des fonctions auxiliaires à écrire?
* Écrire les signatures des fonctions.
. . .
## Structures de données
\footnotesize
. . .
```C
typedef enum {empty, deleted, occupied};
typedef ... key_t;
typedef ... value_t;
typedef struct _cell_t {
key_t key;
value_t value;
state_t state;
} cell_t;
typedef struct _hm {
cell_t *table;
int capacity;
int size;
} hm;
```
# Écrivons le code!
## Fonctions auxiliaires
. . .
```C
static int hash(key_t key);
static int rehash(int index, key_t key);
static int find_index(hm h, key_t key);
```
## Signature de l'API
. . .
```C
void hm_init(hm *h, int capacity);
void hm_destroy(hm *h);
bool hm_set(hm *h, key_t key, value_t *value);
bool hm_get(hm h, key_t key, value_t *value);
bool hm_remove(hm *h, key_t key, value_t *value);
bool hm_search(hm h, key_t key);
void hm_print(hm h);
```
# Live code session!
0. Offered to you by ProtonVPN[^1]!
. . .
1. Like the video.
2. Subscribe to the channel.
3. Use our one time voucher for ProtonVPN: `PAULISAWESOME`.
4. Consider donating on our patreon.
[^1]: The fastest way to connect to BBB!
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment