Skip to content
Snippets Groups Projects
Verified Commit deb1a6a8 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

removed content not covered

parent a52d0b4c
No related branches found
No related tags found
No related merge requests found
......@@ -729,312 +729,3 @@ rien maj_force_sur_etoile(arbre, e, theta)
* Insérer 20, 40, 10, 30, 15, 35, 7, 26, 18, 22, 5, 42, 13, 46, 27, 8, 32, 38, 24, 45, 25, 2, 14, 28, 32, 41,
* Dans un B-arbre d'ordre 2.
# Les B-arbres
## Structure de données
* Chaque page a une contrainte de remplissage, par rapport à l'ordre de l'arbre;
* Un nœud (page) est composé d'un tableau de clés/pointeurs vers les enfants;
```
P_0 | K_1 | P_1 | K_2 | | P_i | K_{i+1} | | P_{m-1} | K_m | P_m
```
* `P_0`, ..., `P_m` pointeurs vers enfants;
* `K_1`, ..., `K_m` les clés.
* Il y a `m+1` pointeurs mais `m` clés.
* Comment faire pour gérer l'insertion?
# Les B-arbres
## Faire un dessin de la structure de données (3min matrix)?
. . .
![Structure d'une page de B-arbre d'ordre 2.](figs/barbres_struct.png)
1. On veut un tableau de `P_i, K_i => struct`;
2. `K_0` va être en "trop";
3. Pour simplifier l'insertion dans une page, on ajoute un élément de plus.
# Les B-arbres
## L'insertion cas nœud pas plein, insertion `4`?
![](figs/barbres_insert_easy.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_easy_after.svg){width=50%}
# Les B-arbres
## L'insertion cas nœud pas plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page n'est pas pleine, on a terminé.
# Les B-arbres
## L'insertion cas nœud plein, insertion `2`?
![](figs/barbres_insert_hard_before.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_during.svg){width=50%}
# Les B-arbres
## L'insertion cas nœud plein, promotion `3`?
![](figs/barbres_insert_hard_during.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_after.svg)
# Les B-arbres
## L'insertion cas nœud plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page est pleine:
* On trouve la valeur médiane `M` de la page (quel indice?);
* On crée une nouvelle page de droite;
* On copie les valeur à droite de `M` dans la nouvelle page;
* On promeut `M` dans la page du dessus;
* On connecte le pointeur de gauche de `M` et de droite de `M` avec l'ancienne et la nouvelle page respectivement.
# Les B-arbres
## Pseudo-code structure de données (3min, matrix)?
. . .
```C
struct page
entier ordre, nb
element tab[2*ordre + 2]
```
```C
struct element
int clé
page pg
```
# Les B-arbres
\footnotesize
## Les fonctions utilitaires (5min matrix)
```C
booléen est_feuille(page) // la page est elle une feuille?
entier position(page, valeur) // à quelle indice on insère?
booléen est_dans_page(page, valeur) // la valeur est dans la page
```
. . .
```C
booléen est_feuille(page)
retourne (page.tab[0].pg == vide)
entier position(page, valeur)
i = 0
tant que i < page.nb && val >= page.tab[i+1].clef
i += 1
retourne i
booléen est_dans_page(page, valeur)
i = position(page, valeur)
retourne (page.nb > 0 && page.tab[i].val == valeur)
```
# Les B-arbres
\footnotesize
## Les fonctions utilitaires (5min matrix)
```C
page nouvelle_page(ordre) // creer une page
rien liberer_memoire(page) // liberer tout un arbre!
```
. . .
```C
page nouvelle_page(ordre)
page = allouer(page)
page.ordre = ordre
page.nb = 0
page.tab = allouer(2*ordre+2)
retourner page
rien liberer_memoire(page)
si est_feuille(page)
liberer(page.tab)
liberer(page)
sinon
pour fille dans page.tab
liberer_memoire(fille)
liberer(page.tab)
liberer(page)
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
page recherche(page, valeur) // retourner la page contenant
// la valeur ou vide
```
. . .
```C
page recherche(page, valeur)
si est_dans_page(page, valeur)
retourne page
sinon si est_feuille(page)
retourne vide
sinon
recherche(page.tab[position(page, valeur)], valeur)
```
# Les B-arbres
## Les fonctions
```C
page inserer_valeur(page, valeur) // inserer une valeur
```
. . .
```C
page inserer_valeur(page, valeur)
element = nouvel_element(valeur)
// on change element pour savoir s'il faut le remonter
inserer_element(page, element)
si element.page != vide && page.nb > 2*page.ordre
// si on atteint le sommet!
page = ajouter_niveau(page, element)
retourne page
```
# Les B-arbres
## Les fonctions
```C
rien inserer_element(page, element) // inserer un element et voir s'il remonte
```
. . .
```C
rien inserer_element(page, element)
si est_feuille(page)
placer(page, element)
sinon
sous_page = page.tab[position(page, element)].page
inserer_element(sous_page, element)
// un element a été promu
si element.page != vide
placer(page, element)
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
rien placer(page, element) // inserer un élément
```
. . .
```C
rien placer(page, element)
pos = position(page, element.clé)
pour i de 2*page.ordre à pos+1
page.tab[i+1] = page.tab[i]
page.tab[pos+1] = element
page.nb += 1
si page.nb > 2*page.ordre
scinder(page, element)
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
rien scinder(page, element) // casser une page et remonter
```
. . .
```C
rien scinder(page, element)
new_page = new_page(page.ordre)
new_page.nb = page.ordre
pour i de 0 à ordre inclu
new_page.tab[i] = page.tab[i+ordre+1]
element.clé = page.tab[ordre+1].clé
element.page = new_page
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
page ajouter_niveau(page, element) // si on remonte à la racine...
// on doit créer une nouvelle racine
```
. . .
```C
page ajouter_niveau(page, element)
tmp = nouvelle_page(page.ordre)
tmp.tab[0].page = page
tmp.tab[1].clé = element.clé
tmp.tab[1].page = element.page
retourne tmp
```
<!-- # Les B-arbres -->
<!-- ## Structure de données en C (3min, matrix) -->
<!-- . . . -->
<!-- ```C -->
<!-- typedef struct _page { -->
<!-- int order, nb; -->
<!-- struct _element *tab; -->
<!-- } page; -->
<!-- ``` -->
<!-- ```C -->
<!-- typedef struct element { -->
<!-- int key; -->
<!-- struct _page *pg; -->
<!-- } element; -->
<!-- ``` -->
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment