Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
math_tech_info
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ilias.nhairi
math_tech_info
Commits
f8e7798e
Unverified
Commit
f8e7798e
authored
7 years ago
by
orestis.malaspin
Committed by
GitHub
7 years ago
Browse files
Options
Downloads
Plain Diff
Merge pull request #33 from malaspinas/patch-10
Update cours.md
parents
d446972a
d0e6b625
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
cours.md
+3
-3
3 additions, 3 deletions
cours.md
with
3 additions
and
3 deletions
cours.md
+
3
−
3
View file @
f8e7798e
...
...
@@ -278,7 +278,7 @@ Si $f$ est dérivable en $a$ alors $f$ est continue en $a$.
Propriétés +.#
Soient $f$ et $g$ deux fonctions dérivables (dont les dérivées sont $f'$
Soient $f$ et $g$ deux fonctions dérivables
sur $D$
(dont les dérivées sont $f'$
et $g'$), et $a
\i
n{
\r
eal}$, alors
1.
$(f+g)'=f'+g'$.
...
...
@@ -299,9 +299,9 @@ $C\in {\real}$, nous avons
2.
$f(x)=e^{C x}$, $f'(x)=Ce^{Cx}$.
3.
$f(x)=
\l
n(x)$, $f'(x)=
\f
rac{1}{x}
$.
3.
$f(x)=
\l
n(x)$, $f'(x)=
1/x
$.
4.
$f(x)=C, $f
’
(x)=0.
4.
$f(x)=C, $f
'
(x)=0.
5.
$f(x)=
\s
in(x)$, $f'(x)=
\c
os(x)$.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment