Skip to content
Snippets Groups Projects
Verified Commit 34201281 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

added cours 25

parent 979a3941
No related branches found
No related tags found
No related merge requests found
---
title: "Graphes - Plus court chemin (2)"
date: "2023-06-23"
---
# Questions
* A quoi sert l'algorithme de Dijkstra?
. . .
* A trouver le plus court chemin entre un sommet, $s$, d'un graphe pondéré et tous les autres sommets.
* Quelle est la limitation de l'algorithme de Dijkstra?
. . .
* Les poids doivent être positifs.
* Résumer les étapes de l'algorithme de Dijkstra.
. . .
* `distance[source] = 0`, `ditance[reste]=inf`;
* enfiler tous les sommets, `distance <=> priorité`;
* tant qu'il y a des sommets dans la file:
* u = défiler;
* pour tous les sommets `v` dans le voisinage de `u`;
* mettre à jour `distance[v]` (priorité et précédence) si `distance[v] > distance[u] + w(u,v)`.
# Plus cours chemin pour toute paire de sommets
## Comment faire pour avoir toutes les paires?
. . .
* Appliquer Dijkstra sur tous les sommets d'origine.
* Complexité:
* Graphe dense: $\mathcal{O}(|V|)\mathcal{O}(|V|^2\log|V|)=\mathcal{O}(|V|^3\log|V|)$.
* Graphe peu dense: $\mathcal{O}(|V|)\mathcal{O}(|V|\log|V|)=\mathcal{O}(|V|^2\log|V|)$.
. . .
## Solution alternative: Floyd--Warshall
* Pour toutes paires de sommets $u,v\in V$, trouver le chemin de poids minimal reliant $u$ à $v$.
* Complexité $\mathcal{O}(|V|^3)$, indiqué pour graphes denses.
* Fonctionne avec la matrice d'adjacence.
# Algorithme de Floyd--Warshall
## Idée générale
* Soit l'ensemble de sommets $V=\{1, 2, 3, 4, ..., n\}$.
* Pour toute paire de sommets, $i,j$, on considère tous les chemins passant par les sommets intermédiaires $\in\{1, 2, ..., k\}$ avec $k\leq n$.
* On garde pour chaque $k$ la plus petite valeur.
## Principe
* A chaque étape, $k$, on vérifie s'il est plus court d'aller de $i$ à $j$ en passant par le sommet $k$.
* Si à l'étape $k-1$, le coût du parcours est $p$, on vérifie si $p$ est plus petit que $p_1+p_2$, le chemin de $i$ à $k$, et $k$ à $j$ respectivement.
# Algorithme de Floyd--Warshall
## The algorithme
Soit $d_{ij}(k)$ le plus court chemin de $i$ à $j$ passant par les sommets $\in\{1,2,...,k\}$
$$
d_{ij}(k)=\left\{
\begin{array}{ll}
w(i,j), & \mbox{si } k=0,\\
\min(d_{ij}(k-1),d_{ik}(k-1)+d_{kj}(k-1)), & \mbox{sinon}.
\end{array}
\right.
$$
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
![Le graphe, $D=w$.](figs/floyd_exemple.png)
::::
:::: column
## Que vaut $D^{(0)}$ (3min)?
. . .
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(0)}$?
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(1)}$ (3min)?
. . .
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & \mathbf{6} & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \mathbf{3} & \mathbf{5} & 0 & \mathbf{4} \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(0)}$
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(1)}$ (3min)?
. . .
$$
D^{(1)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & \mathbf{6} & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \mathbf{3} & \mathbf{5} & 0 & \mathbf{4} \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
## Exemple
$$
D_{42}^{(1)}=D_{41}^{(0)}+D_{12}^{(0)}=1+2<\infty.
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(1)}$
$$
D^{(1)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(2)}$ (3min)?
. . .
$$
D^{(2)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
\mathbf{4} & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(2)}$
$$
D^{(2)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(3)}$ (3min)?
. . .
$$
D^{(3)}=\begin{bmatrix}
0 & 2 & 4 & \mathbf{8} & 3 \\
2 & 0 & 6 & \mathbf{10} & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(3)}$
$$
D^{(3)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(4)}$ (3min)?
. . .
$$
D^{(4)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\mathbf{2} & \mathbf{4} & \mathbf{6} & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(4)}$
$$
D^{(4)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
2 & 4 & 6 & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(5)}$ (3min)?
. . .
$$
D^{(5)}=\begin{bmatrix}
0 & 2 & 4 & \mathbf{4} & 3 \\
2 & 0 & 6 & \mathbf{2} & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
2 & 4 & 6 & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall
## The pseudo-code (10min)
* Quelle structure de données?
* Quelle initialisation?
* Quel est le code pour le calcul de la matrice $D$?
# Algorithme de Floyd--Warshall
## The pseudo-code
* Quelle structure de données?
```C
int distance[n][n];
```
. . .
* Quelle initialisation?
```C
matrice ini_floyd_warshall(distance, n, w)
pour i de 1 à n
pour j de 1 à n
distance[i][j] = w(i,j)
retourne distance
```
# Algorithme de Floyd--Warshall
## The pseudo-code
* Quel est le code pour le calcul de la matrice $D$?
```C
matrice floyd_warshall(distance, n, w)
pour k de 1 à n
pour i de 1 à n
pour j de 1 à n
distance[i][j] = min(distance[i][j],
distance[i][k] + distance[k][j])
retourne distance
```
# Algorithme de Floyd--Warshall
## La matrice de précédence
* On a pas encore vu comment reconstruire le plusc court chemin!
* On définit, $P_{ij}^{(k)}$, qui est le prédécesseur du sommet $j$ depuis $i$ avec les sommets intermédiaires $\in\{1, 2, ..., k\}$.
$$
P^{(0)}_{ij}=\left\{
\begin{array}{ll}
\mbox{vide}, & \mbox{si } i=j\mbox{, ou }w(i,j)=\infty\\
i, & \mbox{sinon}.
\end{array}
\right.
$$
* Mise à jour
$$
P^{(k)}_{ij}=\left\{
\begin{array}{ll}
P^{(k-1)}_{\mathbf{i}j}, & \mbox{si } d_{ij}^{(k)}\leq d_{ik}^{(k-1)}+d_{kj}^{(k-1)}\\
P^{(k-1)}_{\mathbf{k}j}, & \mbox{sinon}.
\end{array}
\right.
$$
. . .
* Moralité: si le chemin est plus court en passant par $k$, alors il faut utiliser son prédécesseur!
# Algorithme de Floyd--Warshall
## La matrice de précédence (pseudo-code, 3min)
. . .
```C
matrice, matrice floyd_warshall(distance, n, w)
pour k de 1 à n
pour i de 1 à n
pour j de 1 à n
n_distance = distance[i][k] + distance[k][j]
if n_distance < distance[i][j]
distance[i][j] = n_distance
précédence[i][j] = précédence[k][j]
retourne distance, précédence
```
# Algorithme de Floyd--Warshall (exercice)
::: columns
:::: column
![Le graphe, $D=w$.](figs/floyd_exemple.png)
::::
:::: column
## Que vaut $P^{(0)}$ (3min)?
. . .
$$
P^{(0)}=\begin{bmatrix}
- & 1 & 1 & - & 1 \\
2 & - & 2 & - & 2 \\
3 & 3 & - & 3 & 3 \\
4 & - & - & - & 4 \\
- & - & - & 5 & - \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exercice)
::: columns
:::: column
![Le graphe, $D=w$.](figs/floyd_exemple.png)
::::
:::: column
## Que vaut $P^{(5)}$ (10min)?
. . .
$$
P^{(5)}=\begin{bmatrix}
- & 1 & 1 & 5 & 1 \\
2 & - & 1 & 5 & 2 \\
2 & 3 & - & 3 & 3 \\
4 & 1 & 1 & - & 1 \\
4 & 1 & 1 & 5 & - \\
\end{bmatrix}
$$
::::
:::
# Exercice: retrouver le chemin entre 1 et 4 (5min)
$$
P=\begin{bmatrix}
- & 1 & 1 & 5 & 1 \\
2 & - & 1 & 5 & 2 \\
2 & 3 & - & 3 & 3 \\
4 & 1 & 1 & - & 4 \\
4 & 1 & 1 & 5 & - \\
\end{bmatrix}
$$
. . .
## Solution
* Le sommet $5=P_{14}$, on a donc, $5\rightarrow 4$, on veut connaître le prédécesseur de 5.
* Le sommet $1=P_{15}$, on a donc, $1\rightarrow 5\rightarrow 4$. The end.
# Exercice complet
## Appliquer l'algorithme de Floyd--Warshall au graphe suivant
![The exorcist.](figs/floyd_exercice.png){width=50%}
* Bien indiquer l'état de $D$ et $P$ à chaque étape!
* Ne pas oublier de faire la matrice d'adjacence évidemment...
# La suite
* Sans transition.... la suite!
# Trouver un réseau électrique pour
![Ces maisons n'ont pas d'électricité.](figs/arbre_couvrant_vide.png)
# Solution: pas optimale
![Le réseau simple, mais nul.](figs/arbre_couvrant_mal.png)
* La longueur totale des câbles est super longue!
# Solution: optimale
![Le meilleur réseau.](figs/arbre_couvrant_bien.png)
# Formalisation: Les arbres couvrants
## Application: minimisation des coûrs
* Équipement d'un lotissement avec des lignes électriques/téléphoniques, des canalisations, ...
. . .
* Pour réduire les coûts, on cherche à minimiser la longueur totale des câbles/tuyaux.
. . .
* Les lignes/tuyaux forment un *arbre couvrant*.
. . .
* La meilleure option est un *arbre couvrant minimal*.
# Formalisation: Les arbres couvrants
* Qu'est-ce qu'un arbre couvrant? Des idées? De quel objet on part? Où va-t-on?
. . .
* Un arbre couvrant d'un graphe non-orienté et connexe est:
* un arbre inclu dans le graphe qui connecte tous les sommets du graphe.
. . .
![Exemple d'arbres couvrants d'un graphe connexe.](figs/arbre_couvrant_exemples.png)
# Arbres couvrants
* Quels algorithmes que nous avons déjà vus permettent de construire des arbres couvrants?
. . .
* Les parcours en largeur et en profondeur!
. . .
![Graphe, et parcours comme arbres couvrants.](figs/arbres_couvrants_parcours.png)
# Arbres couvrants minimaux
* Un *arbre couvrant minimal* est un sous-graphe d'un graphe non-orienté pondéré $G(V,E)$, tel quel:
* C'est un arbre (graphe acyclique);
* Il couvre tous les sommets de $G$ et contient $|V|-1$ arêtes;
* Le coût total associé aux arêtes de l'arbre est minimum parmi tous les arbres couvrants possibles.
. . .
* Est-il unique?
. . .
* Pas forcément.
# Arbres couvrants minimaux
* Comment générer un arbre couvrant minimal?
![Un graphe, connexe, non-orienté, pondéré, et son arbre couvrant minimal.](figs/arbre_couvrant_minimal_exemple.png)
# Algorithme de Prim
::: columns
:::: column
## Un exemple
![Le graphe de départ.](figs/prim_0.png)
::::
:::: column
## On part de `e` (au hasard)
![Le sommet `e` est couvert.](figs/prim_1.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_1.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `e->d`
![Le sommet `d` est couvert.](figs/prim_2.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_2.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `d->a`
![Le sommet `a` est couvert.](figs/prim_3.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_3.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `d->c`
![Le sommet `c` est couvert.](figs/prim_4.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_4.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `e->b`
![Le sommet `b` est couvert.](figs/prim_5.png)
::::
:::
* Game over!
slides/figs/floyd_exemple.png

82.7 KiB

slides/figs/floyd_exercice.png

91.4 KiB

slides/figs/prim_0.png

37.3 KiB

slides/figs/prim_1.png

37.7 KiB

slides/figs/prim_2.png

37.7 KiB

slides/figs/prim_3.png

38.1 KiB

slides/figs/prim_4.png

38.6 KiB

slides/figs/prim_5.png

39.3 KiB

slides/figs/prim_exercice.png

53.2 KiB

slides/figs/prim_solution.png

101 KiB

0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment