Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • master
1 result

Target

Select target project
  • isc2/maths/controle4
1 result
Select Git revision
  • master
1 result
Show changes
Commits on Source (2)
......@@ -171,6 +171,8 @@ def ex2():
axs[0, 1].plot(t, SD.f(t), color='black', label='$f$')
axs[0, 1].plot(t, y0, color='orange', label='$T_{f}$')
axs[0, 1].plot(SD.Taylor_points[0], SD.f(
SD.Taylor_points[0]), "-o", color='red', label=f'a = {SD.Taylor_points[0]}')
axs[0, 1].set_title(
f'Développement de $T_f$ en $a = {SD.Taylor_points[0]}$')
axs[0, 1].set_ylim([-1.2, 1.2])
......@@ -179,6 +181,8 @@ def ex2():
axs[1, 0].plot(t, SD.f(t), color='black', label='$f$')
axs[1, 0].plot(t, y1, color='blue', label='$T_{f}$')
axs[1, 0].plot(SD.Taylor_points[1], SD.f(
SD.Taylor_points[1]), "-o", color='red', label=f'a = {SD.Taylor_points[1]}')
axs[1, 0].set_title(
f'Développement de $T_f$ en $a = {SD.Taylor_points[1]}$')
axs[1, 0].set_ylim([-1.2, 1.2])
......@@ -187,6 +191,8 @@ def ex2():
axs[1, 1].plot(t, SD.f(t), color='black', label='$f$')
axs[1, 1].plot(t, y2, color='violet', label='$T_{f}$')
axs[1, 1].plot(SD.Taylor_points[2], SD.f(
SD.Taylor_points[2]), "-o", color='red', label=f'a = {SD.Taylor_points[2]}')
axs[1, 1].set_title(
f'Développement de $T_f$ en $a = {SD.Taylor_points[2]}$')
axs[1, 1].set_ylim([-1.2, 1.2])
......
figs/ex2_taylor.png

157 KiB | W: 0px | H: 0px

figs/ex2_taylor.png

163 KiB | W: 0px | H: 0px

figs/ex2_taylor.png
figs/ex2_taylor.png
figs/ex2_taylor.png
figs/ex2_taylor.png
  • 2-up
  • Swipe
  • Onion skin
......@@ -18,10 +18,24 @@ format:
colorlinks: true
---
# Graphe de divers polynômes de Taylor
# Polynômes de Taylor
![Graphiques de la fonction $f$ et de ses développements de Taylor en divers points](./figs/ex2_taylor.png)
::: {#thm-taylor-errmax}
## L'erreur maximale théorique
À défaut de ne pas vouloir recopier l'entièreté du polycopié de M. Baillif, je
vais me restreindre à simplement copier-coller la formule en \text{\LaTeX} parce que
ça fait toujours plaisir.
$$
R_{f, n, a}(x) = \max_{\xi \in I} \left| \frac{f^{(n + 1)}(\xi)(x - a)^{n + 1}}{(n + 1)!} \right|
$$
:::
# Exercice 2
# Exercice 3
......