Skip to content
Snippets Groups Projects
Verified Commit cc0a0508 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

updated 22

parent 4cefffd8
Branches
No related tags found
No related merge requests found
--- ---
title: "Arbres quaternaires" title: "Arbres quaternaires"
date: "2024-05-30" date: "2024-04-30"
--- ---
# Rappel sur ls arbres quaternaires # Rappel sur ls arbres quaternaires
...@@ -937,287 +937,3 @@ rien maj_force_sur_etoile(arbre, e, theta) ...@@ -937,287 +937,3 @@ rien maj_force_sur_etoile(arbre, e, theta)
maj_force_sur_etoile(enfant, e, theta) maj_force_sur_etoile(enfant, e, theta)
``` ```
# Les B-arbres
\Huge
Les B-arbres
# Les B-arbres
## Problématique
* Grands jeux de données (en 1970).
* Stockage dans un arbre, mais l'arbre tiens pas en mémoire.
* Regrouper les sous-arbres en **pages** qui tiennent en mémoire.
## Exemple
* 100 nœuds par page et l'arbre comporte $10^6$ nœuds:
* Recherche B-arbre: $\log_{100}(10^6)=3$;
* Recherche ABR: $\log_2(10^6)=20$.
* Si on doit lire depuis le disque: $10\mathrm{ms}$ par recherche+lecture:
* $30\mathrm{ms}$ (lecture beaucoup plus rapide que recherche) vs $200\mathrm{ms}=0.2\mathrm{s}$.
## Remarques
* On sait pas ce que veut dire `B`: Bayer, Boeing, Balanced?
* Variante plus récente B+-arbres.
# Les B-arbres
## Illustration, arbre divisé en pages de 3 nœuds
![Arbre divisé en pages de 3 nœuds](figs/barbres_page3.png)
. . .
## Utilisation
* Bases de données (souvent très grandes donc sur le disque);
* Système de fichier.
# Les B-arbres
## Avantages
* Arbres moins profonds;
* Diminue les opération de rééquilibrage;
* Complexité toujours en $\log(N)$;
. . .
## Définition: B-arbre d'ordre $n$
* Chaque page d'un arbre contient au plus $2\cdot n$ *clés*;
* Chaque page (excepté la racine) contient au moins $n$ clés;
* Chaque page qui contient $m$ clés contient soit:
* $0$ descendants;
* $m+1$ descendants.
* Toutes les pages terminales apparaissent au même niveau.
# Les B-arbres
## Est-ce un B-arbre?
![B-arbre d'ordre 2.](figs/barbres_exemple.png)
. . .
## Oui!
* Dans chaque nœud les clés sont **triées**.
* Chaque page contient au plus $n$ nœuds: check;
* Chaque nœud avec $m$ clés a $m+1$ descendants;
* Toutes les feuilles apparaissent au même niveau.
# Les B-arbres
## Exemple de recherche: trouver `32`
![B-arbre d'ordre 2.](figs/barbres_exemple.png)
. . .
* Si `n` plus petit que la 1e clé ou plus grand que la dernière descendre.
* Sinon parcourir (par bissection ou séquentiellement) jusqu'à trouver ou descendre entre 2 éléments.
# Les B-arbres
## La recherche de la clé `C` algorithme
0. En partant de la racine.
1. Si on est dans une feuille:
* Si la `C` est dans une page, retourner la page;
* Sinon c'est perdu.
2. Sinon:
* Tant que `C > page` passer à la page suivante
* Descendre
# Les B-arbres
## Disclaimer
* Inspiration de <https://en.wikipedia.org/wiki/B-tree>
## Exemples d'insertion: `1`
![B-arbre d'ordre 1.](figs/barbres_1.svg)
. . .
* L'arbre est vide, on insère juste dans la première page.
# Les B-arbres
## Exemples d'insertion: `2`
![B-arbre d'ordre 1. Nombre pages max = 2.](figs/barbres_2.svg)
. . .
* La première page est pas pleine, on insère dans l'ordre (après 1).
# Les B-arbres
## Exemples d'insertion: `3`
![B-arbre d'ordre 1.](figs/barbres_2.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `3`
![B-arbre d'ordre 1. Nombre pages max = 2.](figs/barbres_3.svg){width=50%}
. . .
* La page est pleine, on crée deux enfants.
* On choisit, `2`, la médiane de `1, 2, 3` et il est inséré à la racine.
* `1` descend à gauche, `3` descend à droite.
# Les B-arbres
## Exemples d'insertion: `4`
![B-arbre d'ordre 1.](figs/barbres_3.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `4`
![B-arbre d'ordre 1. Nombre enfants 0 ou 2.](figs/barbres_4.svg){width=50%}
. . .
* On pourrait insérer à droite de `2`, mais... ça ferait 2 parents pour 2 enfants (mais `m` parents => `m+1` enfants ou `0`);
* On descend à droite (`4 > 2`);
* On insère à droite de `3`.
# Les B-arbres
## Exemples d'insertion: `5`
![B-arbre d'ordre 1.](figs/barbres_4.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `5`
![B-arbre d'ordre 1.](figs/barbres_5.svg)
. . .
* On descend à droite (on peut pas insérer à la racine comme pour `4`);
* On dépasse la capacité de l'enfant droite;
* `4`, médiane de `3, 4, 5`, remonte à la racine;
* On crée un nouveau nœud à droite de `4`;
* La règle `m => m+1` est ok.
# Les B-arbres
## Exemples d'insertion: `6`
![B-arbre d'ordre 1.](figs/barbres_5.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `6`
![B-arbre d'ordre 1.](figs/barbres_6.svg)
. . .
* `6 > 4` on descend à droite;
* `6 > 5` et on a à la place à droite, on insère.
# Les B-arbres
## Exemples d'insertion: `7`
![B-arbre d'ordre 1.](figs/barbres_6.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `7`
![B-arbre d'ordre 1.](figs/barbres_7.svg){width=50%}
. . .
* `7 > 4` on descend à droite;
* `7 > 6` mais on a dépassé la capacité;
* `6` est la médiane de `5, 6, 7`, remonte à la racine;
* `5` reste à gauche, `7` à droite, mais `6` fait dépasser la capacité de la racine;
* `4` est la médiane de `2, 4, 6`, `4` remonte, `2` reste à gauche, `6` à droite.
# Les B-arbres
## L'algorithme d'insertion
0. Rechercher la feuille (la page a aucun enfant) où insérer;
1. Si la page n'est pas pleine insérer dans l'ordre croissant.
2. Si la page est pleine, on sépare la page en son milieu :
1. On trouve la médiane, `M`, de la page;
2. On met les éléments `< M` dans la page de gauche de `M` et les `> M` dans la page de droite de `M`;
3. `M` est insérée récursivement dans la page parent.
# Les B-arbres
## Exercice: insérer `22, 45, 50` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex1.png)
. . .
![](figs/barbres_ex2.png)
# Les B-arbres
## Exercice: insérer `5` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex2.png)
. . .
![](figs/barbres_ex3.png)
# Les B-arbres
## Exercice: insérer `32, 55, 60` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex3.png)
. . .
![](figs/barbres_ex4.png)
# Les B-arbres
## Exercice: insérer `41` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex4.png)
. . .
![](figs/barbres_ex5.png)
# Les B-arbres
## Exercice (matrix, 15min)
* Insérer 20, 40, 10, 30, 15, 35, 7, 26, 18, 22, 5, 42, 13, 46, 27, 8, 32, 38, 24, 45, 25, 2, 14, 28, 32, 41,
* Dans un B-arbre d'ordre 2.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment