Skip to content
Snippets Groups Projects
Verified Commit e9b95e99 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

ajout quadtree

parent e9629bfa
No related branches found
No related tags found
No related merge requests found
---
title: "Arbres quaternaires"
date: "2024-04-25"
---
# Les arbres quaternaires
\Huge Les arbres quaternaires
# Les arbres quaternaires
## Définition
Arbre dont chaque nœud a 4 enfants ou aucun.
![Un exemple d'arbre quaternaire.](figs/quad_ex.svg)
# Les arbres quaternaires
## Cas d'utilisation
Typiquement utilisés pour représenter des données bidimensionnelles.
Son équivalent tri-dimensionnel est l'octree (chaque nœud a 8 enfants ou aucun).
## Cas d'utilisation: images
* Stockage: compression.
* Transformations: symétries, rotations, etc.
## Cas d'utilisation: simulation
* Indexation spatiale.
* Détection de collisions.
* Simulation de galaxies, Barnes-Hut.
# Exemple de compression
::: columns
:::: {.column width=30%}
## Comment représenter l'image
![Image noir/blanc.](figs/board_blacked_parts.svg)
::::
:::: {.column width=70%}
## Sous la forme d'un arbre quaternaire?
. . .
![L'arbre quaternaire correspondant.](figs/quad_img.svg)
**Économie?**
. . .
Image 64 pixels, arbre 25 nœuds.
::::
:::
# Structure de données
::: columns
:::: {.column width=50%}
## Pseudo-code?
. . .
```python
struct node
info
node sup_gauche, sup_droit,
inf_gauche, inf_droit
```
![Un nœud d'arbre quaternaire.](figs/quad_struct.svg)
::::
:::: {.column width=50%}
## En C?
. . .
```C
struct _node {
int info;
struct _node *sup_left;
struct _node *sup_right;
struct _node *inf_left;
struct _node *inf_right;
};
```
* Pourquoi le `*` est important?
. . .
* Type récursif => taille inconnue à la compilation.
::::
:::
# Une fonctionnalité simple
\footnotesize
## La fonction `est_feuille(noeud)`
* Problème avec cette implémentation?
```python
bool est_feuille(noeud)
retourne
est_vide(sup_gauche(noeud)) &&
est_vide(sup_droit(noeud)) &&
est_vide(inf_gauche(noeud)) &&
est_vide(inf_droit(noeud))
```
. . .
* Inutile d'avoir 4 conditions (soit 4 enfants soit aucun!)
* Facile d'en oublier un!
* Comment changer la structure pour que ça soit moins terrible?
. . .
```python
struct node
info
node enfant[4]
```
# Structure de données
## En C?
. . .
```C
typedef struct _node {
int info;
struct _node *child[4];
} node;
```
## Fonction `is_leaf(node *tree)`?
. . .
```C
bool is_leaf(node *tree) {
return (NULL == tree->child[0]); // only first matters
}
```
# Problème à résoudre
* Construire un arbre quaternaire à partir d'une image:
* Créer l'arbre (allouer la mémoire pour tous les nœuds),
* Le remplir avec les valeurs des pixels.
* Compression de l'image:
* Si les pixels sont les mêmes dans le quadrant on supprime le sous-arbre (sans perte)
* Si les pixels dévient pas trop on supprime le quadrant (avec perte)
# Création de l'arbre
## Comment créer un arbre de profondeur `prof` (3min)?
. . .
```python
arbre creer_arbre(prof)
n = nouveau_noeud() # alloue la mémoire
si prof > 0
pour i = 0 à 3
n.enfant[i] = creer_arbre(prof-1)
retourne n
```
## En `C` (3 min, matrix)?
. . .
```C
node *qt_create(int depth) {
node *n = calloc(1, sizeof(node));
if (depth > 0) {
for (int i = 0; i < 4; ++i) {
n->child[i] = qt_create(depth-1);
}
}
return n;
}
```
# Le nombre de nœuds?
## Comment implémenter la fonction (pseudo-code, 5min, matrix)?
. . .
```C
entier nombre_nœuds(arbre)
si est_feuille(arbre)
retourne 1
sinon
somme = 1
pour i de 0 à 3
somme += nombre_nœuds(arbre.enfant[i])
retourne somme
```
# Le nombre de nœuds?
## Comment implémenter la fonction en C (3min, matrix)?
. . .
```C
int size(node *qt) {
if (is_leaf(qt)) {
return 1;
} else {
int sum = 1;
for (int i = 0; i < 4; ++i) {
sum += size(qt->child[i]);
}
return sum;
}
}
```
# La profondeur en C?
## Implémentation (5min, matrix)
. . .
\footnotesize
```C
int max(int x, int y) {
return (x >= y ? x : y);
}
int max_depth(int depths[4]) {
int m = depths[0];
for (int i = 1; i < 4; ++i) {
m = max(m, depths[i]);
}
return m;
}
int depth(node *qt) {
int depths[] = {0, 0, 0, 0};
if (is_leaf(qt)) {
return 0;
} else {
for (int i = 0; i < 4; ++i) {
depths[i] = depth(qt->child[i]);
}
return 1 + max_depth(depths);
}
}
```
# Fonctions utiles (1/4)
## Comment remplir un arbre depuis une matrice?
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
## Quel arbre cela représente?
. . .
![L'arbre correspondant](figs/quad_img_simple.svg)
# Fonctions utiles (2/4)
* On veut transformer une ligne/colonne en feuille.
* Comment?
::: columns
:::: {.column width=40%}
## Soit `ligne=2`, `colonne=3`
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
::::
:::: {.column width=70%}
## Trouver un algorithme
![Déterminer un algorithme.](figs/quad_img_simple.svg)
* Quelle feuille pour 31 (`li=2`, `co=3`)?
* Plus important: quel chemin?
. . .
* `co -> G/D`, `li -> S/I`,
* `2 * (li / 2) + co / 2 -> 2 * 1 + 1 = 3`
* `2 * ((li % 2) / 1) + (co % 2) / 1 -> 2 * 0 + 1 = 1`
* Comment généraliser?
::::
:::
# Fonctions utiles (3/4)
::: columns
:::: {.column width=40%}
## Soit `ligne=2`, `colonne=3`
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
::::
:::: {.column width=70%}
## Trouver un algorithme (prendre plusieurs exemples, 15min, matrix)
![Déterminer un algorithme.](figs/quad_img_simple.svg)
* Comment généraliser?
. . .
```C
noeud position(li, co, arbre)
d = profondeur(arbre);
tant_que (d >= 1)
index = 2 * ((li % 2^d) / 2^(d-1)) +
(col % 2^d) / 2^(d-1)
arbre = arbre.enfant[index]
d -= 1
retourne arbre
```
::::
:::
# Fonctions utiles (4/4)
\footnotesize
## Pseudo-code
```C
noeud position(li, co, arbre)
d = profondeur(arbre);
tant_que (d >= 1)
index = 2 * ((li % 2^d) / 2^(d-1)) +
(col % 2^d) / 2^(d-1)
arbre = arbre.enfant[index]
d -= 1
retourne arbre
```
## Écrire le code `C` correspondant (5min, matrix)
```C
```
# Remplir l'arbre
## A partir d'une matrice (pseudo-code, 5min, matrix)?
. . .
```C
arbre matrice_à_arbre(matrice)
arbre = creer_arbre(profondeur)
pour li de 0 à nb_lignes(matrice)
pour co de 0 à nb_colonnes(matrice)
noeud = position(li, co, arbre)
noeud.info = matrice[co][li]
retourne arbre
```
. . .
## A partir d'une matrice (C, 5min, matrix)?
. . .
\footnotesize
```C
node *matrix_to_qt(int nb_li, int nb_co, int matrix[nb_li][nb_co], int depth)
{
node *qt = qt_create(depth);
for (int li = 0; li < nd_li; ++li) {
for (int co = 0; co < nd_co; ++co) {
node *current = position(li, co, qt);
current->info = matrix[li][co];
}
}
return qt;
}
```
# Remplir la matrice
## A partir de l'arbre (pseudo-code, 3min, matrix)?
. . .
```C
matrice arbre_à_matrice(arbre)
matrice = creer_matrice(nb_lignes(arbre), nb_colonnes(arbre))
pour li de 0 à nb_lignes(matrice)
pour co de 0 à nb_colonnes(matrice)
noeud = position(li, co, arbre)
matrice[co][li] = noeud.info
retourne matrice
```
. . .
## A partir de l'arbre (C, 3min, matrix)?
. . .
\footnotesize
```C
void qt_to_matrix(node *qt, int nb_li, int nb_co, int matrix[nb_li][nb_co])
for (int li = 0; li < nd_li; ++li) {
for (int co = 0; co < nd_co; ++co) {
node *current = position(li, co, qt);
matrix[li][co] = current->info;
}
}
```
# Transformations avec un arbre quaternaire
## A faire
* Symétrie axiale (horizontale/verticale).
* Rotation quart de cercle (gauche/droite).
* Compression.
# La symétrie verticale
## Que donne la symétrie verticale de
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
. . .
```
SG=0 | SD=1
4 | 4 | 12 | 21
4 | 4 | 7 | 9
------------------
31 | 0 | 1 | 1
27 | 3 | 1 | 1
IG=2 | ID=3
```
# La symétrie d'axe vertical
## Comment faire sur une matrice (3min, matrix)?
. . .
\footnotesize
```C
matrice symétrie(matrice)
pour i de 0 à nb_colonnes(matrice) / 2
pour j de 0 à nb_lignes(matrice)
échanger(matrice[i][j], matrice[nb_colonnes(matrice)-1-i][j])
retourne matrice
```
# La symétrie d'axe vertical
## Comment faire sur un arbre?
* Faire un dessin de l'arbre avant/après (5min, matrix)
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 4 | 4 | 12 | 21
9 | 7 | 4 | 4 4 | 4 | 7 | 9
----------------- => ----------------
1 | 1 | 0 | 31 31 | 0 | 1 | 1
1 | 1 | 3 | 27 27 | 3 | 1 | 1
IG=2 | ID=3 IG=2 | ID=3
```
* Écrire le pseudo-code (3min, matrix)
. . .
\footnotesize
```C
arbre symétrie(arbre)
si !est_feuille(arbre)
échanger(arbre.enfant[0], arbre.enfant[1])
échanger(arbre.enfant[2], arbre.enfant[3])
pour i de 0 à 3
symétrie(arbre.enfant[i])
retourne arbre
```
# La symétrie d'axe horizontal
* Trivial de faire l'axe horizontal (exercice à la maison)
# Rotation d'un quart de cercle
## Comment faire sur un arbre?
* Faire un dessin de l'arbre avant/après (5min, matrix)
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 4 | 4 | 31 | 27
9 | 7 | 4 | 4 4 | 4 | 0 | 3
----------------- => -----------------
1 | 1 | 0 | 31 12 | 7 | 1 | 1
1 | 1 | 3 | 27 21 | 9 | 1 | 1
IG=2 | ID=3 IG=2 | ID=3
```
* Écrire le pseudo-code (3min, matrix)
. . .
```C
rien rotation_gauche(arbre)
si !est_feuille(arbre)
échange_cyclique_gauche(arbre.enfant)
pour i de 0 à 3
rotation_gauche(arbre.enfant[i])
```
# Rotation d'un quart de cercle
\footnotesize
## Comment faire sur un arbre?
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 4 | 4 | 31 | 27
9 | 7 | 4 | 4 4 | 4 | 0 | 3
----------------- => -----------------
1 | 1 | 0 | 31 12 | 7 | 1 | 1
1 | 1 | 3 | 27 21 | 9 | 1 | 1
IG=2 | ID=3 IG=2 | ID=3
```
* Écrire le vrai (5min, matrix)
. . .
```C
void rotate(node *qt) {
if (!is_leaf(qt)) {
node *tmp = qt->child[2];
qt->child[2] = qt->child[0];
qt->child[0] = qt->child[1];
qt->child[1] = qt->child[3];
qt->child[3] = tmp;
for (int i=0;i < 4; i++) {
rotate(qt->child[i]);
}
}
}
```
# Compression sans perte (1/5)
## Idée générale
* Regrouper les pixels par valeur
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 21 | 12 | 4
9 | 7 | 4 | 4 9 | 7 |
----------------- => -----------------
1 | 1 | 0 | 31 1 | 0 | 31
1 | 1 | 3 | 27 | 3 | 27
IG=2 | ID=3 IG=2 | ID=3
```
* Comment faire?
# Compression sans perte (2/5)
## Que devient l'arbre suivant?
![](figs/quad_img_simple.svg)
. . .
## Arbre compressé
![](figs/quad_img_simple_comp.svg)
# Compression sans perte (3/5)
* Si un nœud a tous ses enfants égaux:
* Donner la valeur au nœud,
* Supprimer les enfants.
* Remonter jusqu'à la racine.
## Écrire le pseudo-code (5min, matrix)
. . .
```C
rien compression_sans_pertes(arbre)
si !est_feuille(arbre)
pour i de 0 à 3
compression_sans_pertes(arbre.enfant[i])
si derniere_branche(arbre)
valeur, toutes_égales = valeur_enfants(arbre)
si toutes_egales
arbre.info = valeur
detruire_enfants(arbre)
```
# Compression sans perte (4/5)
\footnotesize
## Écrire le code C (5min, matrix)
. . .
```C
void lossless_compression(node *qt) {
if (!is_leaf(qt)) {
for (int i = 0; i < CHILDREN; i++) {
lossless_compression(qt->child[i]);
}
if (is_last_branch(qt)) {
int val = -1;
if (last_value(qt, &val)) {
qt->info = val;
for (int i = 0; i < 4; ++i) {
free(qt->child[i]);
qt->child[i] = NULL;
}
}
}
}
}
```
# Compression sans perte (5/5)
\footnotesize
```C
bool is_last_branch(node *qt) {
for (int i = 0; i < 4; ++i) {
if (!is_leaf(qt)) {
return false;
}
}
return true;
}
bool last_value(node *qt, int *val) {
int info = qt->child[0];
for (int i = 1; i < 4; ++i) {
if (info != qt->child[i]) {
return false;
}
}
*val = info;
return true;
}
```
# Compression avec perte (1/5)
## Idée générale
* Regrouper les pixels par valeur sous certaines conditions
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 3 21 | 12 | 4
9 | 7 | 4 | 4 9 | 7 |
----------------- => ------------------
1 | 1 | 0 | 31 1 | 0 | 31
2 | 1 | 3 | 27 | 3 | 27
IG=2 | ID=3 IG=2 | ID=3
```
* On enlève si l'écart à la moyenne est "petit"?
# Compression avec perte (2/5)
## Que devient l'arbre suivant si l'écart est petit?
![](figs/quad_img_simple_variation.svg)
. . .
## Arbre compressé
![](figs/quad_img_simple_comp_loss.svg)
# Compression avec perte (3/5)
## Comment mesurer l'écart à la moyenne?
. . .
* Avec l'écart-type
\begin{equation*}
\mu = \frac{1}{4}\sum_{i=0}^{3} p[i],\quad \sigma = \sqrt{\frac{1}{4}\sum_{i=0}^3 (\mu-p[i])
^2} = \sqrt{\frac{1}{4}\left(\sum_{i=0}^3p[i]^2\right)-\mu^2}
\end{equation*}
## Que devient l'algorithme?
. . .
* Si $\sigma<\theta$, $\theta$ est la **tolérance**:
* Remplacer la valeur du pixel par la moyenne des enfants.
* Remonter les valeurs dans l'arbre.
## Quelle influence de la valeur de $\theta$ sur la compression?
. . .
* Plus $\theta$ est grand, plus l'image sera compressée.
# Compression avec perte (4/5)
## Que devient l'arbre avec $\theta=0.5$?
![L'arbre original.](figs/quad_img_simple_variation.svg)
. . .
![Arbre compressé.](figs/quad_img_simple_comp_avg.svg)
# Compression avec perte (5/5)
## Modifications sur la structure de données?
. . .
* On stocke la moyenne, et la moyenne des carrés.
```C
struct noeud
flottant moyenne, moyenne_carre
node enfants[4]
```
* Comment on calcule `moyenne` et `moyenne_carre` sur chaque nœud (pseudo-code)?
# Calcul de la moyenne
## Pseudo-code (5min, matrix)
. . .
```C
rien moyenne(arbre) {
si !est_feuille(arbre)
pour enfant dans arbre.enfants
moyenne(enfant)
pour enfant dans arbre.enfants
arbre.moyenne += enfant.moyenne
arbre.moyenne_carre += enfant.moyenne_carre
arbre.moyenne /= 4
arbre.moyenne_carre /= 4
```
# La compression avec pertes
\footnotesize
## Pseudo-code (5min, matrix)
. . .
```C
rien compression_avec_pertes(arbre, theta)
si !est_feuille(arbre)
pour i de 0 à 3
compression_avec_pertes(arbre.enfant[i])
si derniere_branche(arbre)
si racine(arbre.moyenne_carre - arbre.moyenne^2) < theta
detruire_enfants(arbre)
```
## Le code en entier
```C
arbre = matrice_à_arbre(matrice)
moyenne(arbre)
compression_avec_pertes(arbre)
```
# La dynamique des corps célestes
## Slides très fortement inspirés du cours de J. Latt, Unige
## Simulation du problème à $N$-corps
* Prédiction du mouvement d'un grand nombre de corps célestes.
* Modélisation:
* On se limite aux étoiles;
* Chaque étoile est caractérisée par un point (coordonnées) et une masse;
* On simule en deux dimensions.
* Interactions uniquement par les lois de la gravitation Newtonienne (oui-oui c'est de la **physique**!).
# Les équations du mouvement
## Mouvement de la $i$-ème étoile
* Algorithme de Verlet ($t_{n+1}=t_n+\delta t$)
$$
\vec x_i(t_{n+1})= 2\vec x_i(t_n)-\vec x_i(t_{n-1})+\vec a_i(t_n)\delta t^2.
$$
## Force de gravitation
* $\vec a_i(t_n)=\vec F_i/m_i$.
* Sur l'étoile $i$, la force résultante est donnée par
$$
\vec F_i=\sum_{j=1,j\neq i}^N \vec F_{ij}.
$$
avec
$$
\vec F_{ij}=\frac{G m_i m_j(\vec x_j-\vec x_i)}{||\vec x_j-\vec x_i||^3}.
$$
# Algorithme du problème à $n$-corps
## Pseudo-code: structure de données
```C
struct étoile
flottant m
vec x, x_precedent, f
```
## Pseudo-code: itération temporelle
```C
rien iteration_temporelle(étoiles, dt)
pour étoile_une dans étoiles
étoile_une.f = 0
pour étoile_deux dans étoiles
si (étoile_un != étoile_deux)
étoile_une.f +=
force(étoile_une, étoile_deux)
pour étoile dans étoiles
étoile.x, étoile.x_precedent =
verlet(étoile.x, étoile.x_precedent,
étoile.f / étoile.m, dt)
```
# Algorithme du problème à $n$-corps
## Complexité
* Complexité de chacune des parties?
. . .
* $\mathcal{O}(N^2)$, $\mathcal{O}(N)$.
## En temps CPU pour **une itération**
\footnotesize
* Si temps pour $N=1$ on calcule en $1\mu s$:
+--------+-------+-------+-----------+
| N | N^2 | t [s] | t [réel] |
+--------+-------+-------+-----------+
| 10 | 10^2 | 1e-4 | |
+--------+-------+-------+-----------+
| 10^4 | 10^8 | 1e+2 | ~1min |
+--------+-------+-------+-----------+
| 10^6 | 10^12 | 1e+6 | ~11j |
+--------+-------+-------+-----------+
| 10^9 | 10^18 | 1e+12 | ~30k ans |
+--------+-------+-------+-----------+
| 10^11 | 10^22 | 1e+16 | ~300M ans |
+--------+-------+-------+-----------+
* Typiquement il y a des milliers-millions d'itérations.
* Il y a $10^{11}$ étoiles dans la galaxie.
* Houston we have a problem.
# Question
## Comment faire mieux, des idées?
. . .
* Si un groupe d'étoiles est suffisamment loin, on le modélise comme un corps unique situé en son centre de masse.
* Exemple: Si on simule plusieurs galaxies, on considère chaque galaxie comme un corps unique!
* Un arbre quaternaire est une structure parfaite pour regrouper les étoiles.
# Le cas à 10 corps
::: columns
:::: {.column width=50%}
## Illustration: le cas à 10 corps
![](figs/nbody_bare.png){width=60%}
::::
:::: {.column width=50%}
## Problématique
* On veut calculer la force sur $1$.
::::
:::
. . .
::: columns
:::: {.column width=50%}
## Illustration: le cas à 10 corps
![](figs/nbody_n2.png){width=60%}
::::
:::: {.column width=50%}
## Résultat
* Calcul et somme des forces venant des $9$ autre corps.
::::
:::
# Le cas à 10 corps
::: columns
:::: {.column width=50%}
## Réduction d'un groupe à un seul corps
![](figs/nbody_group.png){width=100%}
::::
:::: {.column width=50%}
## Idée
* On accélère le calcul en traitant un groupe comme un seul corps.
* Fonctionne uniquement si le groupe est assez loin.
* Autrement l'approximation est trop grossière.
::::
:::
# Solution: l'arbre quaternaire
## Corps célestes - arbre
![](figs/nbody_qt_withtree.png)
* On omet les nœuds vides pour éviter la surcharge.
* La numérotation est:
* 0: ID
* 1: SD
* 2: IG
* 3: SG
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 1
![](figs/corps1.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 1
![](figs/arbre1.png){width=100%}
* Quadrant ID.
* La feuille est vide, on insère.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 2
![](figs/corps2.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 1
![](figs/arbre2.png){width=100%}
* Quadrant SD.
* La feuille est vide, on insère.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 3 (1/N)
![](figs/corps3_1.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 1
![](figs/arbre3_1.png){width=100%}
* Quadrant SD.
* La feuille est prise par 2.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 3 (2/N)
![](figs/corps3_2.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 2
![](figs/arbre3_2.png){width=100%}
* On crée un nouveau nœud.
* Deux corps dans le nœud ID.
* On crée un nouveau nœud.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 3 (3/N)
![](figs/corps3_3.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 3
![](figs/arbre3_3.png){width=100%}
* 2 va dans ID.
* 3 va dans SG.
* C'est des feuilles vides, tout va bien.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Que fait-on avec les nœuds intérieurs?
* On les utilise pour:
* stocker la masse totale;
* stocker le centre de masse.
\begin{align}
m&=m_2+m_3,\\
\vec x &= \frac{m_2\vec x_2+m_3\vec x_3}{m}.
\end{align}
## Chaque feuille contient **une étoile**
::::
:::: {.column width=50%}
## Arbre
![](figs/arbre3_3.png){width=100%}
::::
:::
# Résumé
* Insertion du corps `c` dans le nœud `n` en partant de la racine.
* Si le nœud `n`
* ne contient pas de corps, on y dépose `c`,
* est interne, on met à jour masse et centre de masse. `c` est inséré récursivement dans le bon quadrant.
* est externe, on subdivise `n`, on met à jour la masse et centre de masse, on insère récursivement les deux nœuds dans les quadrants appropriés.
## Remarque
* Il faut stocker les coordonnées des quadrants.
* Un nœud a un comportement différent s'il est interne ou externe.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment