Skip to content
Snippets Groups Projects
Verified Commit b4e74ae2 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

maj 2023

parent ada4f795
No related branches found
No related tags found
No related merge requests found
......@@ -269,595 +269,3 @@ int main() {
* Réusiner le code se trouvant sur
[Cyberlearn](https://cyberlearn.hes-so.ch/pluginfile.php/703384/mod_resource/content/1/comprendre.c).
# Tableau à deux dimensions (1/4)
## Mais qu'est-ce donc?
. . .
* Un tableau où chaque cellule est un tableau.
## Quels cas d'utilisation?
. . .
* Tableau à double entrée;
* Image;
* Écran (pixels);
* Matrice (mathématique);
# Tableau à deux dimensions (2/4)
## Exemple: tableau à 3 lignes et 4 colonnes d'entiers
+-----------+-----+-----+-----+-----+
| `indices` | `0` | `1` | `2` | `3` |
+-----------+-----+-----+-----+-----+
| `0` | `7` | `4` | `7` | `3` |
+-----------+-----+-----+-----+-----+
| `1` | `2` | `2` | `9` | `2` |
+-----------+-----+-----+-----+-----+
| `2` | `4` | `8` | `8` | `9` |
+-----------+-----+-----+-----+-----+
## Syntaxe
```C
int tab[3][4]; // déclaration d'un tableau 4x3
tab[2][1]; // accès à la case 2, 1
tab[2][1] = 14; // assignation de 14 à la position 2, 1
```
# Tableau à deux dimensions (3/4)
\footnotesize
## Exercice:
Déclarer et initialiser aléatoirement un tableau `50x100` avec des valeurs `0` à `255`
. . .
```C
#define NX 50
#define NY 100
int tab[NX][NY];
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
tab[i][j] = rand() % 256; // 256 niveaux de gris
}
}
```
## Exercice: afficher le tableau
. . .
```C
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
printf("%d ", tab[i][j]);
}
printf("\n");
}
```
# Tableau à deux dimensions (4/4)
## Attention
* Les éléments ne sont **jamais** initialisés.
* Les bornes ne sont **jamais** vérifiées.
```C
int tab[3][2] = { {1, 2}, {3, 4}, {5, 6} };
printf("%d\n", tab[2][1]); // affiche?
printf("%d\n", tab[10][9]); // affiche?
printf("%d\n", tab[3][1]); // affiche?
```
# La couverture de la reine
* Aux échecs la reine peut se déplacer horizontalement et verticalement
* Pour un échiquier `5x6`, elle *couvre* les cases comme ci-dessous
+-----+-----+-----+-----+-----+-----+-----+
| ` ` | `0` | `1` | `2` | `3` | `4` | `5` |
+-----+-----+-----+-----+-----+-----+-----+
| `0` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `1` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `2` | `*` | `*` | `R` | `*` | `*` | `*` |
+-----+-----+-----+-----+-----+-----+-----+
| `3` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `4` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
## Exercice
* En utilisant les conditions, les tableaux à deux dimensions, et des
`char` uniquement.
* Implémenter un programme qui demande à l'utilisateur d'entrer les
coordonnées de la reine et affiche un tableau comme ci-dessus pour un
échiquier `8x8`.
## Poster le résultat sur `Element`
# Types énumérés (1/2)
* Un **type énuméré**: ensemble de *variantes* (valeurs constantes).
* En `C` les variantes sont des entiers numérotés à partir de 0.
```C
enum days {
monday, tuesday, wednesday,
thursday, friday, saturday, sunday
};
```
* On peut aussi donner des valeurs "custom"
```C
enum days {
monday = 2, tuesday = 8, wednesday = -2,
thursday = 1, friday = 3, saturday = 12, sunday = 9
};
```
* S'utilise comme un type standard et un entier
```C
enum days d = monday;
(d + 2) == tuesday + tuesday; // true
```
# Types énumérés (2/2)
* Très utile dans les `switch ... case`{.C}
```C
enum days d = monday;
switch (d) {
case monday:
// trucs
break;
case tuesday:
printf("0 ou 1\n");
break;
}
```
* Le compilateur vous prévient qu'il en manque!
# Utilisation des types énumérés
## Réusiner votre couverture de la reine avec des `enum`
# Représentation des nombres (1/2)
* Le nombre `247`.
## Nombres décimaux: Les nombres en base 10
+--------+--------+--------+
| $10^2$ | $10^1$ | $10^0$ |
+--------+--------+--------+
| `2` | `4` | `7` |
+--------+--------+--------+
$$
247 = 2\cdot 10^2 + 4\cdot 10^1 + 7\cdot 10^0.
$$
# Représentation des nombres (2/2)
* Le nombre `11110111`.
## Nombres binaires: Les nombres en base 2
+-------+-------+-------+-------+-------+-------+-------+-------+
| $2^7$ | $2^6$ | $2^5$ | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$ |
+-------+-------+-------+-------+-------+-------+-------+-------+
| `1` | `1` | `1` | `1` | `0` | `1` | `1` | `1` |
+-------+-------+-------+-------+-------+-------+-------+-------+
$$
1\cdot 2^7 + 1\cdot 2^6 +1\cdot 2^5 +1\cdot 2^4 +0\cdot 2^3 +1\cdot 2^2
+1\cdot 2^1 +1\cdot 2^0
$$
. . .
$$
= 247.
$$
# Conversion de décimal à binaire (1/2)
## Convertir 11 en binaire?
. . .
* On décompose en puissances de 2 en partant de la plus grande possible
```
11 / 8 = 1, 11 % 8 = 3
3 / 4 = 0, 3 % 4 = 3
3 / 2 = 1, 3 % 2 = 1
1 / 1 = 1, 1 % 1 = 0
```
* On a donc
$$
1011 \Rightarrow 1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot
2^0=11.
$$
# Conversion de décimal à binaire (2/2)
## Convertir un nombre arbitraire en binaire: 247?
* Par groupe établir un algorithme.
. . .
## Algorithme
1. Initialisation
```C
num = 247
while (2^N < num) {
N += 1
}
```
. . .
2. Boucle
```C
while (N >= 0) {
bit = num / 2^N
num = num % 2^N
N -= 1
}
```
# Les additions en binaire
Que donne l'addition `1101` avec `0110`?
* L'addition est la même que dans le système décimal
```
1101 8+4+0+1 = 13
+ 0110 + 0+4+2+0 = 6
------- -----------------
10011 16+0+0+2+1 = 19
```
* Les entiers sur un ordinateur ont une précision **fixée** (ici 4 bits).
* Que se passe-t-il donc ici?
. . .
## Dépassement de capacité: le nombre est "tronqué"
* `10011 (19) -> 0011 (3)`.
* On fait "le tour"."
# Entier non-signés minimal/maximal
* Quel est l'entier non-signé maximal représentable avec 4 bit?
. . .
$$
(1111)_2 = 8+4+2+1 = 15
$$
* Quel est l'entier non-signé minimal représentable avec 4 bit?
. . .
$$
(0000)_2 = 0+0+0+0 = 0
$$
* Quel est l'entier non-signé min/max représentable avec N bit?
. . .
$$
0\mbox{ et }2^N-1.
$$
* Donc `uint32_t?` maximal est?
. . .
$$
4294967295
$$
# Les multiplications en binaire (1/2)
Que donne la multiplication de `1101` avec `0110`?
* L'addition est la même que dans le système décimal
```
1101 13
* 0110 * 6
--------- --------------
0000 78
11010
110100
+ 0000000
--------- --------------
1001110 64+0+0+8+4+2+0
```
# Les multiplications en binaire (2/2)
## Que fait la multiplication par 2?
. . .
* Décalage de un bit vers la gauche!
```
0110
* 0010
---------
0000
+ 01100
---------
01100
```
. . .
## Que fait la multiplication par $2^N$?
. . .
* Décalade de $N$ bits vers la gauche!
# Entiers signés (1/2)
Pas de nombres négatifs encore...
## Comment faire?
. . .
## Solution naïve:
* On ajoute un bit de signe (le bit de poids fort):
```
00000010: +2
10000010: -2
```
## Problèmes?
. . .
* Il y a deux zéros (pas trop grave): `10000000` et `00000000`
* Les additions différentes que pour les non-signés (très grave)
```
00000010 2
+ 10000100 + -4
---------- ----
10000110 = -6 != -2
```
# Entiers signés (2/2)
## Beaucoup mieux
* Complément à un:
* on inverse tous les bits: `1001 => 0110`.
## Encore un peu mieux
* Complément à deux:
* on inverse tous les bits,
* on ajoute 1 (on ignore les dépassements).
. . .
* Comment écrit-on `-4` en 8 bits?
. . .
```
4 = 00000100
________
-4 => 00000100
11111011
+ 00000001
----------
11111100
```
# Le complément à 2 (1/2)
## Questions:
* Comment on écrit `+0` et `-0`?
* Comment calcule-t-on `2 + (-4)`?
* Quel est le complément à 2 de `1000 0000`?
. . .
## Réponses
* Comment on écrit `+0` et `-0`?
```
+0 = 00000000
-0 = 11111111 + 00000001 = 100000000 => 00000000
```
* Comment calcule-t-on `2 + (-4)`?
```
00000010 2
+ 11111100 + -4
---------- -----
11111110 -2
```
* En effet
```
11111110 => 00000001 + 00000001 = 00000010 = 2.
```
# Le complément à 2 (1/2)
## Quels sont les entiers représentables en 8 bits?
. . .
```
01111111 => 127
10000000 => -128 // par définition
```
## Quels sont les entiers représentables sur $N$ bits?
. . .
$$
-2^{N-1} ... 2^{N-1}-1.
$$
## Remarque: dépassement de capacité en `C`
* Comportement indéfini!
<!-- # TODO --
<!-- ## Entiers, entiers non-signés -->
<!-- ## Complément à 1, 2 -->
<!-- ## Nombres à virgule flottante, simple/double précision -->
# Types composés: `struct`{.C} (1/6)
## Fractions
* Numérateur: `int num`;
* Dénominateur: `int denom`.
## Addition
```C
int num1 = 1, denom1 = 2;
int num2 = 1, denom2 = 3;
int num3 = num1 * denom2 + num2 * denom1;
int denom3 = denom1 * denom2;
```
## Pas super pratique....
# Types composés: `struct`{.C} (2/6)
## On peut faire mieux
* Plusieurs variables qu'on aimerait regrouper dans un seul type: `struct`{.C}.
```C
struct fraction { // déclaration du type
int32_t num, denom;
}
struct fraction frac; // déclaration de la variable frac
```
# Types composés: `struct`{.C} (3/6)
## Simplifications
- `typedef`{.C} permet de définir un nouveau type.
```C
typedef unsinged int uint;
typedef struct fraction fraction_t;
typedef struct fraction {
int32_t num, denom;
} fraction_t;
```
- L'initialisation peut aussi se faire avec
```C
fraction_t frac = {1, -2}; // num = 1, denom = -2
fraction_t frac = {.denom = 1, .num = -2};
fraction_t frac = {.denom = 1}; // argl! .num non initialisé
fraction_t frac2 = frac; // copie
```
# Types composés: `struct`{.C} (4/6)
## Pointeurs
- Comme pour tout type, on peut avoir des pointeurs vers un `struct`{.C}.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
fraction_t *frac; // on crée un pointeur
frac->num = 1; // seg fault...
frac->denom = -1; // mémoire pas allouée.
```
![La représentation mémoire de
`fraction_t`.](figs/pointer_struct.svg){width=50%}
# Types composés: `struct`{.C} (5/6)
## Initialisation
- Avec le passage par **référence** on peut modifier un struct *en place*.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
void fraction_init(fraction_t *frac,
int32_t re, int32_t im)
{
// hypothèse: frac a déjà été allouée
frac->num = frac;
frac->denom = denom;
}
int main() {
fraction_t frac; // on alloue une fraction
fraction_init(&frac, 2, -1); // on l'initialise
}
```
# Types composés: `struct`{.C} (6/6)
## Initialisation version copie
* On peut allouer une fraction, l'initialiser et le retourner.
* La valeur retournée peut être copiée dans une nouvelle structure.
```C
fraction_t fraction_create(int32_t re, int32_t im) {
fraction_t frac;
frac.num = re;
frac.denom = im;
return frac;
}
int main() {
// on crée une fraction et on l'initialise
// en copiant la fraction créé par fraction_create
// deux allocation et une copie
fraction_t frac = fraction_create(2, -1);
}
```
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment