Skip to content
Snippets Groups Projects
Verified Commit b4e74ae2 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

maj 2023

parent ada4f795
Branches
No related tags found
No related merge requests found
......@@ -269,595 +269,3 @@ int main() {
* Réusiner le code se trouvant sur
[Cyberlearn](https://cyberlearn.hes-so.ch/pluginfile.php/703384/mod_resource/content/1/comprendre.c).
# Tableau à deux dimensions (1/4)
## Mais qu'est-ce donc?
. . .
* Un tableau où chaque cellule est un tableau.
## Quels cas d'utilisation?
. . .
* Tableau à double entrée;
* Image;
* Écran (pixels);
* Matrice (mathématique);
# Tableau à deux dimensions (2/4)
## Exemple: tableau à 3 lignes et 4 colonnes d'entiers
+-----------+-----+-----+-----+-----+
| `indices` | `0` | `1` | `2` | `3` |
+-----------+-----+-----+-----+-----+
| `0` | `7` | `4` | `7` | `3` |
+-----------+-----+-----+-----+-----+
| `1` | `2` | `2` | `9` | `2` |
+-----------+-----+-----+-----+-----+
| `2` | `4` | `8` | `8` | `9` |
+-----------+-----+-----+-----+-----+
## Syntaxe
```C
int tab[3][4]; // déclaration d'un tableau 4x3
tab[2][1]; // accès à la case 2, 1
tab[2][1] = 14; // assignation de 14 à la position 2, 1
```
# Tableau à deux dimensions (3/4)
\footnotesize
## Exercice:
Déclarer et initialiser aléatoirement un tableau `50x100` avec des valeurs `0` à `255`
. . .
```C
#define NX 50
#define NY 100
int tab[NX][NY];
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
tab[i][j] = rand() % 256; // 256 niveaux de gris
}
}
```
## Exercice: afficher le tableau
. . .
```C
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
printf("%d ", tab[i][j]);
}
printf("\n");
}
```
# Tableau à deux dimensions (4/4)
## Attention
* Les éléments ne sont **jamais** initialisés.
* Les bornes ne sont **jamais** vérifiées.
```C
int tab[3][2] = { {1, 2}, {3, 4}, {5, 6} };
printf("%d\n", tab[2][1]); // affiche?
printf("%d\n", tab[10][9]); // affiche?
printf("%d\n", tab[3][1]); // affiche?
```
# La couverture de la reine
* Aux échecs la reine peut se déplacer horizontalement et verticalement
* Pour un échiquier `5x6`, elle *couvre* les cases comme ci-dessous
+-----+-----+-----+-----+-----+-----+-----+
| ` ` | `0` | `1` | `2` | `3` | `4` | `5` |
+-----+-----+-----+-----+-----+-----+-----+
| `0` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `1` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `2` | `*` | `*` | `R` | `*` | `*` | `*` |
+-----+-----+-----+-----+-----+-----+-----+
| `3` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `4` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
## Exercice
* En utilisant les conditions, les tableaux à deux dimensions, et des
`char` uniquement.
* Implémenter un programme qui demande à l'utilisateur d'entrer les
coordonnées de la reine et affiche un tableau comme ci-dessus pour un
échiquier `8x8`.
## Poster le résultat sur `Element`
# Types énumérés (1/2)
* Un **type énuméré**: ensemble de *variantes* (valeurs constantes).
* En `C` les variantes sont des entiers numérotés à partir de 0.
```C
enum days {
monday, tuesday, wednesday,
thursday, friday, saturday, sunday
};
```
* On peut aussi donner des valeurs "custom"
```C
enum days {
monday = 2, tuesday = 8, wednesday = -2,
thursday = 1, friday = 3, saturday = 12, sunday = 9
};
```
* S'utilise comme un type standard et un entier
```C
enum days d = monday;
(d + 2) == tuesday + tuesday; // true
```
# Types énumérés (2/2)
* Très utile dans les `switch ... case`{.C}
```C
enum days d = monday;
switch (d) {
case monday:
// trucs
break;
case tuesday:
printf("0 ou 1\n");
break;
}
```
* Le compilateur vous prévient qu'il en manque!
# Utilisation des types énumérés
## Réusiner votre couverture de la reine avec des `enum`
# Représentation des nombres (1/2)
* Le nombre `247`.
## Nombres décimaux: Les nombres en base 10
+--------+--------+--------+
| $10^2$ | $10^1$ | $10^0$ |
+--------+--------+--------+
| `2` | `4` | `7` |
+--------+--------+--------+
$$
247 = 2\cdot 10^2 + 4\cdot 10^1 + 7\cdot 10^0.
$$
# Représentation des nombres (2/2)
* Le nombre `11110111`.
## Nombres binaires: Les nombres en base 2
+-------+-------+-------+-------+-------+-------+-------+-------+
| $2^7$ | $2^6$ | $2^5$ | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$ |
+-------+-------+-------+-------+-------+-------+-------+-------+
| `1` | `1` | `1` | `1` | `0` | `1` | `1` | `1` |
+-------+-------+-------+-------+-------+-------+-------+-------+
$$
1\cdot 2^7 + 1\cdot 2^6 +1\cdot 2^5 +1\cdot 2^4 +0\cdot 2^3 +1\cdot 2^2
+1\cdot 2^1 +1\cdot 2^0
$$
. . .
$$
= 247.
$$
# Conversion de décimal à binaire (1/2)
## Convertir 11 en binaire?
. . .
* On décompose en puissances de 2 en partant de la plus grande possible
```
11 / 8 = 1, 11 % 8 = 3
3 / 4 = 0, 3 % 4 = 3
3 / 2 = 1, 3 % 2 = 1
1 / 1 = 1, 1 % 1 = 0
```
* On a donc
$$
1011 \Rightarrow 1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot
2^0=11.
$$
# Conversion de décimal à binaire (2/2)
## Convertir un nombre arbitraire en binaire: 247?
* Par groupe établir un algorithme.
. . .
## Algorithme
1. Initialisation
```C
num = 247
while (2^N < num) {
N += 1
}
```
. . .
2. Boucle
```C
while (N >= 0) {
bit = num / 2^N
num = num % 2^N
N -= 1
}
```
# Les additions en binaire
Que donne l'addition `1101` avec `0110`?
* L'addition est la même que dans le système décimal
```
1101 8+4+0+1 = 13
+ 0110 + 0+4+2+0 = 6
------- -----------------
10011 16+0+0+2+1 = 19
```
* Les entiers sur un ordinateur ont une précision **fixée** (ici 4 bits).
* Que se passe-t-il donc ici?
. . .
## Dépassement de capacité: le nombre est "tronqué"
* `10011 (19) -> 0011 (3)`.
* On fait "le tour"."
# Entier non-signés minimal/maximal
* Quel est l'entier non-signé maximal représentable avec 4 bit?
. . .
$$
(1111)_2 = 8+4+2+1 = 15
$$
* Quel est l'entier non-signé minimal représentable avec 4 bit?
. . .
$$
(0000)_2 = 0+0+0+0 = 0
$$
* Quel est l'entier non-signé min/max représentable avec N bit?
. . .
$$
0\mbox{ et }2^N-1.
$$
* Donc `uint32_t?` maximal est?
. . .
$$
4294967295
$$
# Les multiplications en binaire (1/2)
Que donne la multiplication de `1101` avec `0110`?
* L'addition est la même que dans le système décimal
```
1101 13
* 0110 * 6
--------- --------------
0000 78
11010
110100
+ 0000000
--------- --------------
1001110 64+0+0+8+4+2+0
```
# Les multiplications en binaire (2/2)
## Que fait la multiplication par 2?
. . .
* Décalage de un bit vers la gauche!
```
0110
* 0010
---------
0000
+ 01100
---------
01100
```
. . .
## Que fait la multiplication par $2^N$?
. . .
* Décalade de $N$ bits vers la gauche!
# Entiers signés (1/2)
Pas de nombres négatifs encore...
## Comment faire?
. . .
## Solution naïve:
* On ajoute un bit de signe (le bit de poids fort):
```
00000010: +2
10000010: -2
```
## Problèmes?
. . .
* Il y a deux zéros (pas trop grave): `10000000` et `00000000`
* Les additions différentes que pour les non-signés (très grave)
```
00000010 2
+ 10000100 + -4
---------- ----
10000110 = -6 != -2
```
# Entiers signés (2/2)
## Beaucoup mieux
* Complément à un:
* on inverse tous les bits: `1001 => 0110`.
## Encore un peu mieux
* Complément à deux:
* on inverse tous les bits,
* on ajoute 1 (on ignore les dépassements).
. . .
* Comment écrit-on `-4` en 8 bits?
. . .
```
4 = 00000100
________
-4 => 00000100
11111011
+ 00000001
----------
11111100
```
# Le complément à 2 (1/2)
## Questions:
* Comment on écrit `+0` et `-0`?
* Comment calcule-t-on `2 + (-4)`?
* Quel est le complément à 2 de `1000 0000`?
. . .
## Réponses
* Comment on écrit `+0` et `-0`?
```
+0 = 00000000
-0 = 11111111 + 00000001 = 100000000 => 00000000
```
* Comment calcule-t-on `2 + (-4)`?
```
00000010 2
+ 11111100 + -4
---------- -----
11111110 -2
```
* En effet
```
11111110 => 00000001 + 00000001 = 00000010 = 2.
```
# Le complément à 2 (1/2)
## Quels sont les entiers représentables en 8 bits?
. . .
```
01111111 => 127
10000000 => -128 // par définition
```
## Quels sont les entiers représentables sur $N$ bits?
. . .
$$
-2^{N-1} ... 2^{N-1}-1.
$$
## Remarque: dépassement de capacité en `C`
* Comportement indéfini!
<!-- # TODO --
<!-- ## Entiers, entiers non-signés -->
<!-- ## Complément à 1, 2 -->
<!-- ## Nombres à virgule flottante, simple/double précision -->
# Types composés: `struct`{.C} (1/6)
## Fractions
* Numérateur: `int num`;
* Dénominateur: `int denom`.
## Addition
```C
int num1 = 1, denom1 = 2;
int num2 = 1, denom2 = 3;
int num3 = num1 * denom2 + num2 * denom1;
int denom3 = denom1 * denom2;
```
## Pas super pratique....
# Types composés: `struct`{.C} (2/6)
## On peut faire mieux
* Plusieurs variables qu'on aimerait regrouper dans un seul type: `struct`{.C}.
```C
struct fraction { // déclaration du type
int32_t num, denom;
}
struct fraction frac; // déclaration de la variable frac
```
# Types composés: `struct`{.C} (3/6)
## Simplifications
- `typedef`{.C} permet de définir un nouveau type.
```C
typedef unsinged int uint;
typedef struct fraction fraction_t;
typedef struct fraction {
int32_t num, denom;
} fraction_t;
```
- L'initialisation peut aussi se faire avec
```C
fraction_t frac = {1, -2}; // num = 1, denom = -2
fraction_t frac = {.denom = 1, .num = -2};
fraction_t frac = {.denom = 1}; // argl! .num non initialisé
fraction_t frac2 = frac; // copie
```
# Types composés: `struct`{.C} (4/6)
## Pointeurs
- Comme pour tout type, on peut avoir des pointeurs vers un `struct`{.C}.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
fraction_t *frac; // on crée un pointeur
frac->num = 1; // seg fault...
frac->denom = -1; // mémoire pas allouée.
```
![La représentation mémoire de
`fraction_t`.](figs/pointer_struct.svg){width=50%}
# Types composés: `struct`{.C} (5/6)
## Initialisation
- Avec le passage par **référence** on peut modifier un struct *en place*.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
void fraction_init(fraction_t *frac,
int32_t re, int32_t im)
{
// hypothèse: frac a déjà été allouée
frac->num = frac;
frac->denom = denom;
}
int main() {
fraction_t frac; // on alloue une fraction
fraction_init(&frac, 2, -1); // on l'initialise
}
```
# Types composés: `struct`{.C} (6/6)
## Initialisation version copie
* On peut allouer une fraction, l'initialiser et le retourner.
* La valeur retournée peut être copiée dans une nouvelle structure.
```C
fraction_t fraction_create(int32_t re, int32_t im) {
fraction_t frac;
frac.num = re;
frac.denom = im;
return frac;
}
int main() {
// on crée une fraction et on l'initialise
// en copiant la fraction créé par fraction_create
// deux allocation et une copie
fraction_t frac = fraction_create(2, -1);
}
```
---
title: "Tableaux à deux dimensions et représentation des nombres"
date: "2023-10-17"
---
# Réusinage de code (refactoring)
## Exercice:
* Réusiner le code se trouvant sur
[Cyberlearn](https://cyberlearn.hes-so.ch/pluginfile.php/703384/mod_resource/content/1/comprendre.c).
# Tableau à deux dimensions (1/4)
## Mais qu'est-ce donc?
. . .
* Un tableau où chaque cellule est un tableau.
## Quels cas d'utilisation?
. . .
* Tableau à double entrée;
* Image;
* Écran (pixels);
* Matrice (mathématique);
# Tableau à deux dimensions (2/4)
## Exemple: tableau à 3 lignes et 4 colonnes d'entiers
+-----------+-----+-----+-----+-----+
| `indices` | `0` | `1` | `2` | `3` |
+-----------+-----+-----+-----+-----+
| `0` | `7` | `4` | `7` | `3` |
+-----------+-----+-----+-----+-----+
| `1` | `2` | `2` | `9` | `2` |
+-----------+-----+-----+-----+-----+
| `2` | `4` | `8` | `8` | `9` |
+-----------+-----+-----+-----+-----+
## Syntaxe
```C
int tab[3][4]; // déclaration d'un tableau 4x3
tab[2][1]; // accès à la case 2, 1
tab[2][1] = 14; // assignation de 14 à la position 2, 1
```
# Tableau à deux dimensions (3/4)
\footnotesize
## Exercice:
Déclarer et initialiser aléatoirement un tableau `50x100` avec des valeurs `0` à `255`
. . .
```C
#define NX 50
#define NY 100
int tab[NX][NY];
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
tab[i][j] = rand() % 256; // 256 niveaux de gris
}
}
```
## Exercice: afficher le tableau
. . .
```C
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
printf("%d ", tab[i][j]);
}
printf("\n");
}
```
# Tableau à deux dimensions (4/4)
## Attention
* Les éléments ne sont **jamais** initialisés.
* Les bornes ne sont **jamais** vérifiées.
```C
int tab[3][2] = { {1, 2}, {3, 4}, {5, 6} };
printf("%d\n", tab[2][1]); // affiche?
printf("%d\n", tab[10][9]); // affiche?
printf("%d\n", tab[3][1]); // affiche?
```
# La couverture de la reine
* Aux échecs la reine peut se déplacer horizontalement et verticalement
* Pour un échiquier `5x6`, elle *couvre* les cases comme ci-dessous
+-----+-----+-----+-----+-----+-----+-----+
| ` ` | `0` | `1` | `2` | `3` | `4` | `5` |
+-----+-----+-----+-----+-----+-----+-----+
| `0` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `1` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `2` | `*` | `*` | `R` | `*` | `*` | `*` |
+-----+-----+-----+-----+-----+-----+-----+
| `3` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `4` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
## Exercice
* En utilisant les conditions, les tableaux à deux dimensions, et des
`char` uniquement.
* Implémenter un programme qui demande à l'utilisateur d'entrer les
coordonnées de la reine et affiche un tableau comme ci-dessus pour un
échiquier `8x8`.
## Poster le résultat sur `Element`
# Types énumérés (1/2)
* Un **type énuméré**: ensemble de *variantes* (valeurs constantes).
* En `C` les variantes sont des entiers numérotés à partir de 0.
```C
enum days {
monday, tuesday, wednesday,
thursday, friday, saturday, sunday
};
```
* On peut aussi donner des valeurs "custom"
```C
enum days {
monday = 2, tuesday = 8, wednesday = -2,
thursday = 1, friday = 3, saturday = 12, sunday = 9
};
```
* S'utilise comme un type standard et un entier
```C
enum days d = monday;
(d + 2) == monday + monday; // true
```
# Types énumérés (2/2)
* Très utile dans les `switch ... case`{.C}
```C
enum days d = monday;
switch (d) {
case monday:
// trucs
break;
case tuesday:
printf("0 ou 1\n");
break;
}
```
* Le compilateur vous prévient qu'il en manque!
# Utilisation des types énumérés
## Réusiner votre couverture de la reine avec des `enum`
A faire à la maison comme exercice!
# Représentation des nombres (1/2)
* Le nombre `247`.
## Nombres décimaux: Les nombres en base 10
+--------+--------+--------+
| $10^2$ | $10^1$ | $10^0$ |
+--------+--------+--------+
| `2` | `4` | `7` |
+--------+--------+--------+
$$
247 = 2\cdot 10^2 + 4\cdot 10^1 + 7\cdot 10^0.
$$
# Représentation des nombres (2/2)
* Le nombre `11110111`.
## Nombres binaires: Les nombres en base 2
+-------+-------+-------+-------+-------+-------+-------+-------+
| $2^7$ | $2^6$ | $2^5$ | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$ |
+-------+-------+-------+-------+-------+-------+-------+-------+
| `1` | `1` | `1` | `1` | `0` | `1` | `1` | `1` |
+-------+-------+-------+-------+-------+-------+-------+-------+
$$
1\cdot 2^7 + 1\cdot 2^6 +1\cdot 2^5 +1\cdot 2^4 +0\cdot 2^3 +1\cdot 2^2
+1\cdot 2^1 +1\cdot 2^0
$$
. . .
$$
= 247.
$$
# Conversion de décimal à binaire (1/2)
## Convertir 11 en binaire?
. . .
* On décompose en puissances de 2 en partant de la plus grande possible
```
11 / 8 = 1, 11 % 8 = 3
3 / 4 = 0, 3 % 4 = 3
3 / 2 = 1, 3 % 2 = 1
1 / 1 = 1, 1 % 1 = 0
```
* On a donc
$$
1011 \Rightarrow 1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot
2^0=11.
$$
# Conversion de décimal à binaire (2/2)
## Convertir un nombre arbitraire en binaire: 247?
* Par groupe établir un algorithme.
. . .
## Algorithme
1. Initialisation
```C
num = 247
tant que (2^N < num) {
N += 1
}
```
. . .
2. Boucle
```C
tant que (N >= 0) {
bit = num / 2^N
num = num % 2^N
N -= 1
}
```
# Les additions en binaire
Que donne l'addition `1101` avec `0110`?
* L'addition est la même que dans le système décimal
```
1101 8+4+0+1 = 13
+ 0110 + 0+4+2+0 = 6
------- -----------------
10011 16+0+0+2+1 = 19
```
* Les entiers sur un ordinateur ont une précision **fixée** (ici 4 bits).
* Que se passe-t-il donc ici?
. . .
## Dépassement de capacité: le nombre est "tronqué"
* `10011 (19) -> 0011 (3)`.
* On fait "le tour"."
# Entier non-signés minimal/maximal
* Quel est l'entier non-signé maximal représentable avec 4 bit?
. . .
$$
(1111)_2 = 8+4+2+1 = 15
$$
* Quel est l'entier non-signé minimal représentable avec 4 bit?
. . .
$$
(0000)_2 = 0+0+0+0 = 0
$$
* Quel est l'entier non-signé min/max représentable avec N bit?
. . .
$$
0\mbox{ et }2^N-1.
$$
* Donc `uint32_t?` maximal est?
. . .
$$
2^{32}-1=4'294'967'295
$$
# Les multiplications en binaire (1/2)
Que donne la multiplication de `1101` avec `0110`?
* La mutliplication est la même que dans le système décimal
```
1101 13
* 0110 * 6
--------- --------------
0000 78
11010
110100
+ 0000000
--------- --------------
1001110 64+0+0+8+4+2+0
```
# Les multiplications en binaire (2/2)
## Que fait la multiplication par 2?
. . .
* Décalage de un bit vers la gauche!
```
0110
* 0010
---------
0000
+ 01100
---------
01100
```
. . .
## Que fait la multiplication par $2^N$?
. . .
* Décalade de $N$ bits vers la gauche!
# Entiers signés (1/2)
Pas de nombres négatifs encore...
## Comment faire?
. . .
## Solution naïve:
* On ajoute un bit de signe (le bit de poids fort):
```
00000010: +2
10000010: -2
```
## Problèmes?
. . .
* Il y a deux zéros (pas trop grave): `10000000` et `00000000`
* Les additions différentes que pour les non-signés (très grave)
```
00000010 2
+ 10000100 + -4
---------- ----
10000110 = -6 != -2
```
# Entiers signés (2/2)
## Beaucoup mieux
* Complément à un:
* on inverse tous les bits: `1001 => 0110`.
## Encore un peu mieux
* Complément à deux:
* on inverse tous les bits,
* on ajoute 1 (on ignore les dépassements).
. . .
* Comment écrit-on `-4` en 8 bits?
. . .
```
4 = 00000100
________
-4 => 00000100
11111011
+ 00000001
----------
11111100
```
# Le complément à 2 (1/2)
## Questions:
* Comment on écrit `+0` et `-0`?
* Comment calcule-t-on `2 + (-4)`?
* Quel est le complément à 2 de `1000 0000`?
. . .
## Réponses
* Comment on écrit `+0` et `-0`?
```
+0 = 00000000
-0 = 11111111 + 00000001 = 100000000 => 00000000
```
* Comment calcule-t-on `2 + (-4)`?
```
00000010 2
+ 11111100 + -4
---------- -----
11111110 -2
```
* En effet
```
11111110 => 00000001 + 00000001 = 00000010 = 2.
```
# Le complément à 2 (2/2)
## Quels sont les entiers représentables en 8 bits?
. . .
```
01111111 => 127
10000000 => -128 // par définition
```
## Quels sont les entiers représentables sur $N$ bits?
. . .
$$
-2^{N-1} ... 2^{N-1}-1.
$$
## Remarque: dépassement de capacité en `C`
* Comportement indéfini!
# Types composés: `struct`{.C} (1/6)
## Fractions
* Numérateur: `int num`;
* Dénominateur: `int denom`.
## Addition
```C
int num1 = 1, denom1 = 2;
int num2 = 1, denom2 = 3;
int num3 = num1 * denom2 + num2 * denom1;
int denom3 = denom1 * denom2;
```
## Pas super pratique....
# Types composés: `struct`{.C} (2/6)
## On peut faire mieux
* Plusieurs variables qu'on aimerait regrouper dans un seul type: `struct`{.C}.
```C
struct fraction { // déclaration du type
int32_t num, denom;
}
struct fraction frac; // déclaration de la variable frac
```
# Types composés: `struct`{.C} (3/6)
## Simplifications
- `typedef`{.C} permet de définir un nouveau type.
```C
typedef unsinged int uint;
typedef struct fraction fraction_t;
typedef struct fraction {
int32_t num, denom;
} fraction_t;
```
- L'initialisation peut aussi se faire avec
```C
fraction_t frac = {1, -2}; // num = 1, denom = -2
fraction_t frac = {.denom = 1, .num = -2};
fraction_t frac = {.denom = 1}; // argl! .num non initialisé
fraction_t frac2 = frac; // copie
```
# Types composés: `struct`{.C} (4/6)
## Pointeurs
- Comme pour tout type, on peut avoir des pointeurs vers un `struct`{.C}.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
fraction_t *frac; // on crée un pointeur
frac->num = 1; // seg fault...
frac->denom = -1; // mémoire pas allouée.
```
![La représentation mémoire de
`fraction_t`.](figs/pointer_struct.svg){width=50%}
# Types composés: `struct`{.C} (5/6)
## Initialisation
- Avec le passage par **référence** on peut modifier un struct *en place*.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
void fraction_init(fraction_t *frac,
int32_t re, int32_t im)
{
// hypothèse: frac a déjà été allouée
frac->num = frac;
frac->denom = denom;
}
int main() {
fraction_t frac; // on alloue une fraction
fraction_init(&frac, 2, -1); // on l'initialise
}
```
# Types composés: `struct`{.C} (6/6)
## Initialisation version copie
* On peut allouer une fraction, l'initialiser et le retourner.
* La valeur retournée peut être copiée dans une nouvelle structure.
```C
fraction_t fraction_create(int32_t re, int32_t im) {
fraction_t frac;
frac.num = re;
frac.denom = im;
return frac;
}
int main() {
// on crée une fraction et on l'initialise
// en copiant la fraction créé par fraction_create
// deux allocation et une copie
fraction_t frac = fraction_create(2, -1);
}
```
# Nombres à virgule (1/3)
## Comment manipuler des nombres à virgule?
$$
0.1 + 0.2 = 0.3.
$$
Facile non?
. . .
## Et ça?
```C
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {
float a = atof(argv[1]);
float b = atof(argv[2]);
printf("%.10f\n", (double)(a + b));
}
```
. . .
## Que se passe-t-il donc?
# Nombres à virgule (2/3)
## Nombres à virgule fixe
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| $2^3$ | $2^2$ | $2^1$ | $2^0$ | `.` | $2^{-1}$ | $2^{-2}$ | $2^{-3}$ | $2^{-4}$ |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| `1` | `0` | `1` | `0` | `.` | `0` | `1` | `0` | `1` |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
## Qu'est-ce ça donne en décimal?
. . .
$$
2^3+2^1+\frac{1}{2^2}+\frac{1}{2^4} = 8+2+0.5+0.0625=10.5625.
$$
## Limites de cette représentation?
. . .
* Tous les nombres `> 16`.
* Tous les nombres `< 0.0625`.
* Tous les nombres dont la décimale est pas un multiple de `0.0625`.
# Nombres à virgule (3/3)
## Nombres à virgule fixe
* Nombres de $0=0000.0000$ à $15.9375=1111.1111$.
* Beaucoup de "trous" (au moins $0.0625$) entre deux nombres.
## Solution partielle?
. . .
* Rajouter des bits.
* Bouger la virgule.
# Nombres à virgule flottante (1/2)
## Notation scientifique
* Les nombres sont représentés en terme:
* Une mantisse
* Une base
* Un exposant
$$
\underbrace{22.1214}_{\mbox{nombre}}=\underbrace{221214}_{\mbox{mantisse}}\cdot
{\underbrace{10}_{\mbox{base}}}{\overbrace{^{-4}}^{\mbox{exp.}}},
$$
. . .
On peut donc séparer la représentation en 2:
* La mantisse
* L'exposant
# Nombres à virgule flottante (2/2)
## Quel est l'avantage?
. . .
On peut représenter des nombres sur énormément d'ordres de grandeur avec un
nombre de bits fixés.
## Différence fondamentale avec la virgule fixe?
. . .
La précision des nombres est **variable**:
* On a uniquement un nombre de chiffres **significatifs**.
$$
123456\cdot 10^{23}+ 123456\cdot 10^{-23}.
$$
## Quel inconvénient y a-t-il?
. . .
Ce mélange d'échelles entraîne un **perte de précision**.
# Nombres à virgule flottante simple précision (1/4)
Aussi appelés *IEEE 754 single-precision binary floating point*.
![Nombres à virgule flottante 32 bits. Source:
[Wikipedia](https://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg)](figs/Float_example_bare.svg)
## Spécification
* 1 bit de signe,
* 8 bits d'exposant,
* 23 bits de mantisse.
$$
(-1)^{b_{31}}\cdot 2^{(b_{30}b_{29}\dots b_{23})_{2}-127}\cdot (1.b_{22}b_{21}\dots b_{0})_{2},
$$
## Calculer la valeur décimale du nombre ci-dessus
# Nombres à virgule flottante simple précision (2/4)
![Un exercice de nombres à virgule flottante 32 bits. Source:
[Wikipedia](https://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg)](figs/Float_example.svg)
. . .
\begin{align}
\mbox{exposant}&=\sum_{i=0}^7 b_{23+i}2^i=2^2+2^3+2^4+2^5+2^6=124-127,\\
\mbox{mantisse}&=1+\sum_{i=1}^{23}b_{23-i}2^{-i}=1+2^{-2}=1.25,\\
&\Rightarrow (-1)^0\cdot 2^{-3}\cdot 1.25=0.15625
\end{align}
# Nombres à virgule flottante simple précision (3/4)
## Quel nombre ne peux pas être vraiment représenté?
. . .
## Zéro: exception pour l'exposant
* Si l'exposant est `00000000` (zéro)
$$
(-1)^{\mbox{sign}}\cdot 2^{-126}\cdot 0.\mbox{mantisse},
$$
* Sinon si l'exposant est `00000001` à `11111110`
$$
\mbox{valeur normale},
$$
* Sinon `11111111` donne `NaN`.
# Nombres à virgule flottante simple précision (4/4)
## Quels sont les plus petits/grands nombres positifs représentables?
. . .
\begin{align}
0\ 0\dots0\ 0\dots01&=2^{-126}\cdot 2^{-23}=1.4...\cdot
10^{-45},\\
0\ 1\dots10\ 1\dots1&=2^{127}\cdot (2-2^{-23})=3.4...\cdot
10^{38}.
\end{align}
## Combien de chiffres significatifs en décimal?
. . .
* 24 bits ($23 + 1$) sont utiles pour la mantisse, soit $2^{24}-1$:
* La mantisse fait $\sim2^{24}\sim 10^7$,
* Ou encore $\sim \log_{10}(2^{24})\sim 7$.
* Environ **sept** chiffres significatifs.
# Nombres à virgule flottante double précision (64bits)
## Spécification
* 1 bit de signe,
* 11 bits d'exposant,
* 52 bits de mantisse.
. . .
## Combien de chiffres significatifs?
* La mantisse fait $\sim 2^{53}\sim10^{16}$,
* Ou encore $\sim \log_{10}(2^{53})\sim 16$,
* Environ **seize** chiffres significatifs.
## Plus petit/plus grand nombre représentable?
. . .
* Plus petite mantisse et exposant: $\sim 2^{-52}\cdot 2^{-1022}\sim 4\cdot 10^{-324}$,
* Plus grande mantisse et exposant: $\sim 2\cdot 2^{1023}\sim \cdot 1.8\cdot 10^{308}$.
# Précision finie (1/3)
## Erreur de représentation
* Les nombres réels ont potentiellement un **nombre infini** de décimales
* $1/3=0.\overline{3}$,
* $\pi=3.1415926535...$.
* Les nombres à virgule flottante peuvent en représenter qu'un **nombre
fini**.
* $1/3\cong 0.33333$, erreur $0.00000\overline{3}$.
* $\pi\cong3.14159$, erreur $0.0000026535...$.
On rencontre donc des **erreurs de représentation** ou **erreurs
d'arrondi**.
. . .
## Et quand on calcule?
* Avec deux chiffres significatifs
\begin{align}
&8.9+(0.02+0.04)=8.96=9.0,\\
&(8.9+0.02)+0.04=8.9+0.04=8.9.
\end{align}
. . .
## Même pas associatif!
# Précision finie (2/3)
## Erreur de représentation virgule flottante
$$
(1.2)_{10} = 1.\overline{0011}\cdot 2^0\Rightarrow 0\ 01111111\
00110011001100110011010.
$$
Erreur d'arrondi dans les deux derniers bits et tout ceux qui viennent
ensuite
$$
\varepsilon_2 = (00000000000000000000011)_2.
$$
Ou en décimal
$$
\varepsilon_{10} = 4.76837158203125\cdot 10^{-8}.
$$
# Précision finie (3/3)
## Comment définir l'égalité de 2 nombres à virgule flottante?
. . .
Ou en d'autres termes, pour quel $\varepsilon>0$ (appelé `epsilon-machine`) on a
$$
1+\varepsilon = 1,
$$
pour un nombre à virgule flottante?
. . .
Pour un `float` (32 bits) la différence est à
$$
2^{-23}=1.19\cdot 10^{-7},
$$
Soit la précision de la mantisse.
## Comment le mesurer (par groupe)?
. . .
```C
float eps = 1.0;
while ((float)1.0 + (float)0.5 * eps != (float)1.0) {
eps = (float)0.5 * eps;
}
printf("eps = %g\n", eps);
```
# Erreurs d'arrondi
Et jusqu'ici on a encore pas fait d'arithmétique!
## Multiplication avec deux chiffres significatifs, décimal
$$
(1.1)_{10}\cdot (1.1)_{10}=(1.21)_{10}=(1.2)_{10}.
$$
En continuant ce petit jeu:
$$
\underbrace{1.1\cdot 1.1\cdots 1.1}_{\mbox{10 fois}}=2.0.
$$
Alors qu'en réalité
$$
1.1^{10}=2.5937...
$$
Soit une erreur de près de 1/5e!
. . .
## Le même phénomène se produit (à plus petite échelle) avec les `float` ou `double`.
# And now for something completely different
\Huge La récursivité
# Exemple de récursivité (1/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On empile les appels
+----------------+----------------+----------------+----------------+
| | | | `factorial(1)` |
+----------------+----------------+----------------+----------------+
| | | `factorial(2)` | `factorial(2)` |
+----------------+----------------+----------------+----------------+
| | `factorial(3)` | `factorial(3)` | `factorial(3)` |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `factorial(4)` |
+----------------+----------------+----------------+----------------+
# Exemple de récursivité (2/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On dépile les calculs
+----------------+----------------+----------------+----------------+
| `1` | | | |
+----------------+----------------+----------------+----------------+
| `factorial(2)` | `2 * 1 = 2` | | |
+----------------+----------------+----------------+----------------+
| `factorial(3)` | `factorial(3)` | `3 * 2 = 6` | |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `4 * 6 = 24` |
+----------------+----------------+----------------+----------------+
# La récursivité (1/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
# La récursivité (2/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) { // Condition de récursivité
return n * factorial(n - 1);
} else { // Condition d'arrêt
return 1;
}
}
```
# La récursivité (3/4)
## Exercice: trouver l'$\varepsilon$-machine pour un `double`
. . .
Rappelez-vous vous l'avez fait en style **impératif** plus tôt.
. . .
```C
double epsilon_machine(double eps) {
if (1.0 + eps != 1.0) {
return epsilon_machine(eps / 2.0);
} else {
return eps;
}
}
```
# La récursivité (4/4)
\footnotesize
## Exercice: que fait ce code récursif?
```C
void recurse(int n) {
printf("%d ", n % 2);
if (n / 2 != 0) {
recurse(n / 2);
} else {
printf("\n");
}
}
recurse(13);
```
. . .
```C
recurse(13): n = 13, n % 2 = 1, n / 2 = 6,
recurse(6): n = 6, n % 2 = 0, n / 2 = 3,
recurse(3): n = 3, n % 2 = 1, n / 2 = 1,
recurse(1): n = 1, n % 2 = 1, n / 2 = 0.
// affiche: 1 1 0 1
```
. . .
Affiche la représentation binaire d'un nombre!
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment