@@ -3319,7 +3319,7 @@ on peut définir deux grandeurs, $Q_i\in\{x_i\}_{i=0}^{k-1}$ et $\alpha_i\in[0,1
\begin{equation}
F(Q_i)=\alpha_i.
\end{equation}
En d'autres termes $Q_i$ est la valeur pour laquelle la fréquence cumulée vaut $\alpha_i$. $Q_i$ correspond donc au nombre d'individus dons la fréquence cumulée est de $\alpha_i$.
En d'autres termes $Q_i$ est la valeur pour laquelle la fréquence cumulée vaut $\alpha_i$. $Q_i$ correspond donc au nombre d'individus dont la fréquence cumulée est de $\alpha_i$.
En particulier si $\alpha_i=1/2$, alors $Q_i=\tilde{x}$ ($Q_i$ est la médiane). Il est commun d'avoir $Q_i\in[0.25,0.5,0.75]$, on parle alors de quartiles. Avec $Q_1=0.25$ et $Q_3=0.75$,
le nombre d'individus entre $0.25$ et $0.75$ est donné par