Skip to content
Snippets Groups Projects
Commit 5406312f authored by abir.chebbi's avatar abir.chebbi
Browse files

readme

parent 7a66360d
No related branches found
No related tags found
No related merge requests found
......@@ -13,7 +13,7 @@
### Step 1: Object storage Creation
Create an S3 bucket and upload a few PDF files by running:
`python create-S3-and-put-docs.py --bucket_name [YourBucketName] --local_path [PathToYourPDFFiles]`
`python3 create-S3-and-put-docs.py --bucket_name [YourBucketName] --local_path [PathToYourPDFFiles]`
Where:
- **--bucket_name**: The name for the new S3 bucket to be created.
......@@ -23,11 +23,11 @@ Where:
### Step 2: Vector Store Creation
Create a vector database for storing embeddings by running:
`python create-vector-db.py --collection_name [Name_of_colletion] --IAM_user [YourIAM_User]`
`python3 create-vector-db.py --collection_name [Name_of_colletion] --iam_user [YourIAM_user]`
Where:
- **--collection_name**: Name of the collection that you want to create to store embeddings.
- **--IAM_USER** : For example for group 14 the IAM USER = master-group-14
- **--iam_user** : For example for group 14 the iam_user is `master-group-14`
This script performs the following actions:
......@@ -41,7 +41,7 @@ After setting up the S3 bucket and Vector Store, we could process PDF files to g
Run:
`python main.py --bucket_name [YourBucketName] --endpoint [YourVectorDBEndpoint]`
`python3 main.py --bucket_name [YourBucketName] --endpoint [YourVectorDBEndpoint] --index_name [Index_name]`
Where:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment