Skip to content
Snippets Groups Projects
Commit 43f55e17 authored by michael.divia's avatar michael.divia
Browse files

Forgot this

parent 3e290677
Branches
No related tags found
No related merge requests found
import tensorflow as tf
from tensorflow.keras import layers, models, Input
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing import image_dataset_from_directory
from sklearn.utils.class_weight import compute_class_weight
import numpy as np
import json
import os
import argparse
# --- GPU Strategy ---
strategy = tf.distribute.MirroredStrategy()
print("Number of GPUs:", strategy.num_replicas_in_sync)
# --- Paths ---
parser = argparse.ArgumentParser(description="WHERE ?!")
parser.add_argument("--hpc", choices=["yes", "no"], default="no",
help="Use HPC paths if 'yes', otherwise local paths.")
args = parser.parse_args()
if args.hpc == "yes":
dataset_path = "/home/users/d/divia/scratch/Combined_Dataset"
model_output_path = "/home/users/d/divia/pokedex/models/Xception"
else:
dataset_path = "/home/padi/Git/pokedex/Combined_Dataset"
model_output_path = "/home/padi/Git/pokedex/models/Xception"
os.makedirs(model_output_path, exist_ok=True)
# --- Custom Xception-like model ---
def simple_xception(input_shape, num_classes):
inputs = Input(shape=input_shape)
x = layers.Rescaling(1.0 / 255)(inputs)
x = layers.Conv2D(128, 3, strides=2, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
previous_block_activation = x
for size in [256, 512, 728]:
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.MaxPooling2D(3, strides=2, padding="same")(x)
residual = layers.Conv2D(size, 1, strides=2, padding="same")(previous_block_activation)
x = layers.add([x, residual])
previous_block_activation = x
x = layers.SeparableConv2D(1024, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dropout(0.25)(x)
outputs = layers.Dense(num_classes, activation='softmax')(x)
return models.Model(inputs, outputs)
# --- Image settings ---
img_size = (256, 256)
batch_size = 32
# --- Data Augmentation ---
data_augmentation = tf.keras.Sequential([
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
layers.RandomZoom(0.1),
layers.RandomContrast(0.1),
])
# --- Load datasets ---
raw_train_ds = image_dataset_from_directory(
dataset_path,
image_size=img_size,
batch_size=batch_size,
validation_split=0.2,
subset="training",
seed=123,
)
raw_val_ds = image_dataset_from_directory(
dataset_path,
image_size=img_size,
batch_size=batch_size,
validation_split=0.2,
subset="validation",
seed=123,
)
# Save class names
class_names = raw_train_ds.class_names
with open(os.path.join(model_output_path, "class_names.json"), "w") as f:
json.dump(class_names, f)
print(f"Detected {len(class_names)} Pokémon classes.")
# --- Compute class weights ---
print("Computing class weights...")
all_labels = [label.numpy() for _, label in raw_train_ds.unbatch()]
class_weights = compute_class_weight(
class_weight="balanced",
classes=np.unique(all_labels),
y=np.array(all_labels)
)
class_weight_dict = dict(enumerate(class_weights))
print("Class weights ready.")
# --- Performance improvements ---
AUTOTUNE = tf.data.AUTOTUNE
train_ds = raw_train_ds.map(lambda x, y: (data_augmentation(x), y)).prefetch(AUTOTUNE)
val_ds = raw_val_ds.prefetch(buffer_size=AUTOTUNE)
# --- Build and compile model ---
with strategy.scope():
model = simple_xception((*img_size, 3), num_classes=len(class_names))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# --- Callbacks ---
callbacks = [
EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)
]
# --- Train the model ---
model.fit(
train_ds,
validation_data=val_ds,
epochs=20,
callbacks=callbacks,
class_weight=class_weight_dict
)
# --- Save the model ---
model_h5_path = os.path.join(model_output_path, "pokemon_xception.h5")
model.save(model_h5_path)
print(f"Model saved to {model_h5_path}")
# --- Save as TensorFlow SavedModel ---
saved_model_path = os.path.join(model_output_path, "saved_model")
tf.saved_model.save(model, saved_model_path)
print(f"SavedModel exported to {saved_model_path}")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment