Skip to content
Snippets Groups Projects
Commit acd29ce2 authored by IliasN's avatar IliasN
Browse files

Correction correction exercice 3.2 fourrier

parent 9b67b190
Branches
No related tags found
No related merge requests found
......@@ -216,7 +216,7 @@ Corrigé +.#
En utilisant la formule
$$
f[n]=\sum_{k=0}^{N-1}\hat f[n]e^{2\pi ink/N},
f[n]=\frac{1}{N}\sum_{k=0}^{N-1}\hat f[n]e^{2\pi ink/N},
$$
on peut calculer la TFD de $\hat f=\{2, -1-i, 0, -1+i\}$ avec $N=4$.
On obtient donc
......@@ -225,7 +225,7 @@ f[0]=\hat f[0]+\hat f[1]+\hat f[2]+\hat f[3]=0.
$$
Et ainsi de suite on obtient
\begin{align}
f[1]&=\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2}=2+i(-1-i)+(-i)(-1+i)=4,\\
\hat f[2]&=f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i}=2+(-1)(-1-i)-1(-1+i)=4,\\
\hat f[3]&=f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2}=2-i(-1-i)+i(-1+i)=0.
f[1]&=\frac{1}{4}(\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2})=\frac{1}{4}(2+i(-1-i)+(-i)(-1+i))=1,\\
\hat f[2]&=\frac{1}{4}(f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i})=\frac{1}{4}(2+(-1)(-1-i)-1(-1+i))=1,\\
\hat f[3]&=\frac{1}{4}(f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2})=\frac{1}{4}(2-i(-1-i)+i(-1+i))=0.
\end{align}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment