Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
isc_physics
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
orestis.malaspin
isc_physics
Merge requests
!44
Master
Code
Review changes
Check out branch
Download
Patches
Plain diff
Open
Master
arian.dervisha/isc_physics:master
into
master
Overview
0
Commits
3
Pipelines
2
Changes
1
Open
arian.dervisha
requested to merge
arian.dervisha/isc_physics:master
into
master
1 year ago
Overview
0
Commits
3
Pipelines
2
Changes
1
Expand
Equation solution 17 : r_{34}² = k * (Q_3 * Q_4)/r_{34}² devient r_{34}² = k * (Q_3 * Q_4)/F
0
0
Merge request reports
Compare
master
version 1
35fae812
1 year ago
master (HEAD)
and
latest version
latest version
2fc6b3c4
3 commits,
1 year ago
version 1
35fae812
2 commits,
1 year ago
1 file
+
3
−
3
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
03_charge_electrique_champs_electrique.md
+
3
−
3
Options
@@ -427,7 +427,7 @@ par
$$
\v
ec F=
\v
ec F_{2
\r
ightarrow 3}+
\v
ec F_{1
\r
ightarrow 3}.
$$
Les normes de $
\v
ec F_{2
\r
ightarrow 3}$ et $
\v
ec F{1
\r
ightarrow 3}$ se calculent avec la loi de Coulomb
Les normes de $
\v
ec F_{2
\r
ightarrow 3}$ et $
\v
ec F
_
{1
\r
ightarrow 3}$ se calculent avec la loi de Coulomb
\b
egin{align}
F_{2
\r
ightarrow 3}&=k
\f
rac{Q_2Q_3}{r_23^2}
\c
ong 325
\m
athrm{N},
\\
F_{1
\r
ightarrow 3}&=k
\f
rac{Q_1Q_3}{r_13^2}
\c
ong 140
\m
athrm{N}.
@@ -456,8 +456,8 @@ F=F_{4\rightarrow 3},\\
\e
nd{align}
Nous connaissons déjà la direction de la force et donc dans quelle direction se trouvera $Q_4$ (la direction pointée par l'angle $
\t
heta_4$). La première condition nous permet finalement de calculer la distance entre $Q_3$ et $Q_4$, $r_{34}$
\b
egin{align}
F&=k
\f
rac{Q_3Q_4}{r_{34}^2}=
\f
rac{9
\c
dot 10^9
\c
dot 50
\c
dot 10^{-6}
\c
dot 65
\c
dot 10^{
6
-}}{r_{34}^2},
\n
onumber
\\
r_{34}^2&=k
\f
rac{Q_3Q_4}{
r_{34}^2
}=
\f
rac{29.2}{280},
\n
onumber
\\
F&=k
\f
rac{Q_3Q_4}{r_{34}^2}=
\f
rac{9
\c
dot 10^9
\c
dot 50
\c
dot 10^{-6}
\c
dot 65
\c
dot 10^{-
6
}}{r_{34}^2},
\n
onumber
\\
r_{34}^2&=k
\f
rac{Q_3Q_4}{
F
}=
\f
rac{29.2}{280},
\n
onumber
\\
r_{34}&=0.32
\m
athrm{m}.
\e
nd{align}
Loading