Skip to content
Snippets Groups Projects
Verified Commit 0042d4e6 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

updates

parent 88a190a9
No related branches found
No related tags found
No related merge requests found
...@@ -113,7 +113,7 @@ $$ ...@@ -113,7 +113,7 @@ $$
\partial_t^\ast f^\ast+\bm{\xi}^\ast\cdot \bm{\nabla}^\ast f^\ast=-\frac{1}{\mathrm{Kn}}\left(f^\ast-{f^{eq}}^\ast\right), \partial_t^\ast f^\ast+\bm{\xi}^\ast\cdot \bm{\nabla}^\ast f^\ast=-\frac{1}{\mathrm{Kn}}\left(f^\ast-{f^{eq}}^\ast\right),
\end{equation} \end{equation}
$$ $$
where the space, time, and microscopic velocity is omitted and where where the space, time, and microscopic velocity dependence is omitted and where
$$ $$
\mathrm{Kn}=\frac{\tau\xi_0}{L}, \mathrm{Kn}=\frac{\tau\xi_0}{L},
$$ $$
......
xi = var('xi') xi = var('xi')
u = var('u') u = var('u')
theta = var('theta') theta = var('theta')
xi0 = var('xi0')
n = var('n')
assume(theta > 0) assume(theta > 0)
h0 = 1 def hn(n):
h1 = xi return (-1)^n * xi0^n * exp(xi^2/(2 * xi0^2))*diff(exp(-xi^2/(2 * xi0^2)), xi, n)
h2 = xi^2 - 1
h3 = xi^3 - 3*xi
h4 = xi^4 - 6*xi^2 + 3
h5 = xi^5 - 10*xi^3 + 15*xi
w = 1/sqrt(2*pi) * exp(-xi^2/2) print("Hermite polynomials")
h0 = hn(0)
print(h0)
h1 = hn(1)
print(h1)
h2 = hn(2).full_simplify()
print(h2)
h3 = hn(3).full_simplify()
print(h3)
h4 = hn(4).full_simplify()
print(h4)
h5 = hn(5).full_simplify()
print(h5)
w = 1/sqrt(2*pi) * exp(-xi^2/(2*xi0^2))
print("Coefficients") print("Coefficients")
n0 = integrate(w * h0, xi, -infinity, infinity) n0 = integrate(w * h0, xi, -infinity, infinity)
...@@ -27,7 +39,7 @@ n5 = integrate(w * h5 * h5, xi, -infinity, infinity) ...@@ -27,7 +39,7 @@ n5 = integrate(w * h5 * h5, xi, -infinity, infinity)
print(n5.canonicalize_radical()) print(n5.canonicalize_radical())
bol = 1 / (sqrt(2 * pi * theta)) * exp(-(xi - u)^2/(2 * theta)) bol = 1 / (sqrt(2 * pi * xi0^2)) * exp(-(xi - u)^2/(2 * xi0^2))
res = integrate(bol, xi, -infinity, infinity) res = integrate(bol, xi, -infinity, infinity)
print("Moments of Boltzmann") print("Moments of Boltzmann")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment