Skip to content
Snippets Groups Projects
Verified Commit 66222f21 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

Corrected typos

parent 2366fd59
Branches
No related tags found
No related merge requests found
......@@ -25,7 +25,7 @@ $$
&\partial_t\bm{u}+\bm{u}\cdot\bm{\nabla}\bm{u}=-\frac{1}{\rho}\bm{\nabla}p+\nu\bm{\nabla}^2\bm{u},
\end{align}
$$
where $p$, $\rho$, $\nu$, and $\bm{u}$ are respectively the pressure, density, kinematic viscosity, and velocity of the flow.
where $p$, $\rho$ (which is a constant in the incompressible model), $\nu$, and $\bm{u}$ are respectively the pressure, density, kinematic viscosity, and velocity of the flow.
In order to transform this equation into its dimensionless form a certain amount of characteristic lengths calves must be chosen. Here we will define $U$ as the characteristic velocity of the flow and $L$ its characteristic length.
......@@ -56,7 +56,7 @@ $$
\begin{aligned}
&\bm{u}^\ast=\frac{L}{\nu}\bm{u}, &p^\ast=\frac{L^2}{\nu^2\rho}p,\\\\
&t^\ast=\frac{\nu}{L^2}t, &\bm{x}^\ast=\frac{\bm{x}}{L},\\\\
&\frac{\partial}{\partial t^\ast}=\frac{L^2}{\nu}\frac{\partial}{\partial t}, &\bm{\nabla}^\ast=L\bm{\nabla}
&\partial_t^\ast=\frac{L^2}{\nu}\partial_t, &\bm{\nabla}^\ast=L\bm{\nabla}
\end{aligned}
\end{equation}
$$
......@@ -108,7 +108,7 @@ $$
\begin{aligned}
&\bm{\xi}^\ast=\frac{1}{\xi_0}\bm{\xi},&\quad\rho^\ast=\frac{1}{\rho_0}\rho,\\\\
&t^\ast=\frac{\xi_0}{L}t,&\quad\bm{x}^\ast=\frac{\bm{x}}{L},\\\\
&\frac{\partial}{\partial t^\ast}=\frac{L}{\xi}\frac{\partial}{\partial t},&\quad\bm{\nabla}^\ast=L\bm{\nabla},\\\\
&\partial_t^\ast=\frac{L}{\xi_0}\partial_t,&\quad\bm{\nabla}^\ast=L\bm{\nabla},\\\\
&f^\ast=\frac{\xi_0^D}{\rho_0}f,&\quad{f^{eq}}^\ast=\frac{\xi_0^D}{\rho_0}f^{eq},
\end{aligned}
\end{equation}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment