Skip to content
Snippets Groups Projects
Commit 3cc6d01b authored by orestis.malaspin's avatar orestis.malaspin
Browse files

Merge branch 'malaspinas-patch-7'

parents 4108a1f3 139e2969
Branches
Tags
No related merge requests found
......@@ -181,13 +181,13 @@ $\lim\limits_{x\rightarrow 0^-} f(x)=-\infty$.
Dans certains cas il peut être intéressant d’étudier le comportement des
fonctions quand $x\rightarrow\pm\infty$. Dans ces cas-là on dit qu’on
s’intéresse au comportement *asymptotique* d’une fonction. Ce concept
est particulièrement relevant quand on étudie une fonction que a la
est particulièrement pertinent quand on étudie une fonction qui a la
forme d’une fraction $$h(x)=\frac{f(x)}{g(x)}.$$ Si on s’intéresse au
comportement à l’infini de cette fonction on va prendre sa “limite”
lorsque $x\rightarrow\infty$
$$\lim_{x\rightarrow\infty} h(x)=\lim_{x\rightarrow\infty}\left(\frac{f(x)}{g(x)}\right).$$
Un exemple peut être $f(x)=x-1$, $g(x)=x+1$ et donc $h(x)=(x-1)/(x+1)$
$$\lim_{x\rightarrow\infty} \frac{x-1}{x+1}=\lim_{x\rightarrow\infty} \frac{x}{x}=1.$$
$$\lim_{x\rightarrow\infty} \frac{x-1}{x+1}=\lim_{x\rightarrow\infty} \frac{x(1-1/x)}{x(1+1/x)}=1.$$
De même quand on a $f(x)=3x^4-5x^3+1$, $g(x)=1$ et donc
$h(x)=3x^4-5x^3+1$. Il vient donc
$$\lim_{x\rightarrow\infty} 3x^4-5x^3+1=\lim_{x\rightarrow\infty}3x^4=\infty.$$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment