Skip to content
Snippets Groups Projects
Verified Commit 4be6a24f authored by orestis.malaspin's avatar orestis.malaspin
Browse files

added cours_4

parent 40564bc8
Branches
No related tags found
No related merge requests found
...@@ -283,6 +283,8 @@ int main() { // pseudo C ...@@ -283,6 +283,8 @@ int main() { // pseudo C
} }
``` ```
<!-- TODO: Live implémentation hors des cours? -->
# Les palindromes # Les palindromes
Mot qui se lit pareil de droite à gauche que de gauche à droite: Mot qui se lit pareil de droite à gauche que de gauche à droite:
...@@ -334,358 +336,4 @@ Algorithme de génération de nombres premiers. ...@@ -334,358 +336,4 @@ Algorithme de génération de nombres premiers.
* Implémenter l'algorithme et le poster sur le salon `Element`. * Implémenter l'algorithme et le poster sur le salon `Element`.
# Crible d'Ératosthène: solution
\footnotesize
```C
#include <stdio.h>
#include <stdbool.h>
#define SIZE 51
int main() {
bool tab[SIZE];
for (int i=0;i<SIZE;i++) {
tab[i] = true;
}
for (int i = 2; i < SIZE; i++) {
if (tab[i]) {
printf("%d ", i);
int j = i;
while (j < SIZE) {
j += i;
tab[j] = false;
}
}
}
printf("\n");
}
```
# Tableau à deux dimensions (1/4)
## Mais qu'est-ce donc?
. . .
* Un tableau où chaque cellule est un tableau.
## Quels cas d'utilisation?
. . .
* Tableau à double entrée;
* Image;
* Écran (pixels);
* Matrice (mathématique);
# Tableau à deux dimensions (2/4)
## Exemple: tableau à 3 lignes et 4 colonnes d'entiers
+-----------+-----+-----+-----+-----+
| `indices` | `0` | `1` | `2` | `3` |
+-----------+-----+-----+-----+-----+
| `0` | `7` | `4` | `7` | `3` |
+-----------+-----+-----+-----+-----+
| `1` | `2` | `2` | `9` | `2` |
+-----------+-----+-----+-----+-----+
| `2` | `4` | `8` | `8` | `9` |
+-----------+-----+-----+-----+-----+
## Syntaxe
```C
int tab[3][4]; // déclaration d'un tableau 4x3
tab[2][1]; // accès à la case 2, 1
tab[2][1] = 14; // assignation de 14 à la position 2, 1
```
# Tableau à deux dimensions (3/4)
## Exercice: déclarer et initialiser aléatoirement un tableau `50x100`
. . .
```C
#define NX 50
#define NY 100
int tab[NX][NY];
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
tab[i][j] = rand() % 256; // 256 niveaux de gris
}
}
```
## Exercice: afficher le tableau
. . .
```C
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
printf("%d ", tab[i][j]);
}
printf("\n");
}
```
# Tableau à deux dimensions (4/4)
## Attention
* Les éléments ne sont **jamais** initialisés.
* Les bornes ne sont **jamais** vérifiées.
```C
int tab[3][2] = { {1, 2}, {3, 4}, {5, 6} };
printf("%d\n", tab[2][1]); // affiche?
printf("%d\n", tab[10][9]); // affiche?
printf("%d\n", tab[3][1]); // affiche?
```
# La couverture de la reine
* Aux échecs la reine peut se déplacer horizontalement et verticalement
* Pour un échiquier `5x6`, elle *couvre* les cases comme ci-dessous
+-----+-----+-----+-----+-----+-----+-----+
| ` ` | `0` | `1` | `2` | `3` | `4` | `5` |
+-----+-----+-----+-----+-----+-----+-----+
| `0` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `1` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `2` | `*` | `*` | `R` | `*` | `*` | `*` |
+-----+-----+-----+-----+-----+-----+-----+
| `3` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `4` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
## Exercice
* En utilisant les conditions, les tableaux à deux dimensions, et des
`char` uniquement.
* Implémenter un programme qui demande à l'utilisateur d'entrer les
coordonnées de la reine et affiche un tableau comme ci-dessus pour un
échiquier `8x8`.
## Poster le résultat sur `Element`
# Représentation des nombres (1/2)
* Le nombre `247`.
## Nombres décimaux: Les nombres en base 10
+--------+--------+--------+
| $10^2$ | $10^1$ | $10^0$ |
+--------+--------+--------+
| `2` | `4` | `7` |
+--------+--------+--------+
$$
247 = 2\cdot 10^2 + 4\cdot 10^1 + 7\cdot 10^0.
$$
# Représentation des nombres (2/2)
* Le nombre `11110111`.
## Nombres binaires: Les nombres en base 2
+-------+-------+-------+-------+-------+-------+-------+-------+
| $2^7$ | $2^6$ | $2^5$ | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$ |
+-------+-------+-------+-------+-------+-------+-------+-------+
| `1` | `1` | `1` | `1` | `0` | `1` | `1` | `1` |
+-------+-------+-------+-------+-------+-------+-------+-------+
$$
1\cdot 2^7 + 1\cdot 2^6 +1\cdot 2^5 +1\cdot 2^4 +0\cdot 2^3 +1\cdot 2^2
+1\cdot 2^1 +1\cdot 2^0
$$
. . .
$$
= 247.
$$
# Conversion de décimal à binaire (1/N)
## Convertir 11 en binaire?
. . .
* On décompose en puissances de 2 en partant de la plus grande possible
```
11 / 8 = 1, 11 % 8 = 3
3 / 4 = 0, 3 % 4 = 3
3 / 2 = 1, 3 % 2 = 1
1 / 1 = 1, 1 % 1 = 0
```
* On a donc
$$
1011 \Rightarrow 1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot
2^0=11.
$$
# Conversion de décimal à binaire (2/N)
## Convertir un nombre arbitraire en binaire: 247?
* Par groupe établir un algorithme.
. . .
## Algorithme
1. Initialisation
```C
num = 247
while (2^N < num) {
N += 1
}
```
. . .
2. Boucle
```C
while (N >= 0) {
bit = num / 2^N
num = num % 2^N
N += 1
}
```
# TODO
## Entiers, entiers non-signés
## Complément à 1, 2
## Nombres à virgule flottante, simple/double précision
# Types composés: `struct`{.C} (1/6)
## Fractions
* Plusieurs variables qu'on aimerait regrouper dans un seul type: `struct`{.C}.
* Numérateur: `int num`;
* Dénominateur: `int denom`.
## Addition
```C
int num1 = 1, denom1 = 2;
int num2 = 1, denom2 = 3;
int num3 = num1 * denom2 + num2 * denom1;
int denom3 = denom1 * denom2;
```
## Pas super pratique....
# Types composés: `struct`{.C} (2/6)
## On peut faire mieux
```C
struct fraction { // déclaration du type
int32_t num, denom;
}
struct fraction frac; // déclaration de frac
```
# Types composés: `struct`{.C} (3/6)
## Simplifications
- `typedef`{.C} permet de définir un nouveau type.
```C
typedef unsinged int uint;
typedef struct fraction fraction_t;
typedef struct fraction {
int32_t num, denom;
} fraction_t;
```
- L'initialisation peut aussi se faire avec
```C
fraction_t frac = {1, -2}; // num = 1, denom = -2
fraction_t frac = {.denom = 1, .num = -2};
fraction_t frac = {.denom = 1}; // argl! .num non initialisé
fraction_t frac2 = frac; // copie
```
# Types composés: `struct`{.C} (4/6)
## Pointeurs
- Comme pour tout type, on peut avoir des pointeurs vers un `struct`{.C}.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
fraction_t *frac; // on crée un pointeur
frac->num = 1; // seg fault...
frac->denom = -1; // mémoire pas allouée.
```
![La représentation mémoire de
`fraction_t`.](figs/pointer_struct.svg){width=50%}
# Types composés: `struct`{.C} (5/6)
## Initialisation
- Avec le passage par **référence** on peut modifier un struct *en place*.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
void fraction_init(fraction_t *frac,
int32_t re, int32_t im)
{
// frac a déjà été allouée
frac->num = frac;
frac->denom = denom;
}
int main() {
fraction_t frac; // on alloue une fraction
fraction_init(&frac, 2, -1); // on l'initialise
}
```
# Types composés: `struct`{.C} (6/6)
## Initialisation version copie
* On peut allouer une fraction, l'initialiser et le retourner.
* La valeur retournée peut être copiée dans une nouvelle structure.
```C
fraction_t fraction_create(int32_t re, int32_t im) {
fraction_t frac;
frac.num = re;
frac.denom = im;
return frac;
}
int main() {
// on crée une fraction et on l'initialise
// en copiant la fraction créé par fraction_create
// deux allocation et une copie
fraction_t frac = fraction_create(2, -1);
}
```
# TODO jusqu'aux vacances
* Refactorisation
* Tris et complexité
* Récursivité
---
title: "Introduction aux algorithmes"
date: "2021-10-13"
patat:
eval:
tai:
command: fish
fragment: false
replace: true
ccc:
command: fish
fragment: false
replace: true
images:
backend: auto
...
# Crible d'Ératosthène: solution
\footnotesize
```C
#include <stdio.h>
#include <stdbool.h>
#define SIZE 51
int main() {
bool tab[SIZE];
for (int i=0;i<SIZE;i++) {
tab[i] = true;
}
for (int i = 2; i < SIZE; i++) {
if (tab[i]) {
printf("%d ", i);
int j = i;
while (j < SIZE) {
j += i;
tab[j] = false;
}
}
}
printf("\n");
}
```
# Réusinage de code (refactoring)
## Le réusinage est?
. . .
* le processus de restructuration d'un programme:
* en modifiant son design,
* en modifiant sa structure,
* en modifiant ses algorithmes
* mais en **conservant ses fonctionalités**.
. . .
## Avantages?
. . .
* Amélioration de la lisibilité,
* Amélioration de la maintenabilité,
* Réduction de la complexité.
. . .
## "Make it work, make it nice, make it fast", Kent Beck.
. . .
## Exercice:
* Réusiner le code se trouvant sur [Cyberlearn]()
# Tableau à deux dimensions (1/4)
## Mais qu'est-ce donc?
. . .
* Un tableau où chaque cellule est un tableau.
## Quels cas d'utilisation?
. . .
* Tableau à double entrée;
* Image;
* Écran (pixels);
* Matrice (mathématique);
# Tableau à deux dimensions (2/4)
## Exemple: tableau à 3 lignes et 4 colonnes d'entiers
+-----------+-----+-----+-----+-----+
| `indices` | `0` | `1` | `2` | `3` |
+-----------+-----+-----+-----+-----+
| `0` | `7` | `4` | `7` | `3` |
+-----------+-----+-----+-----+-----+
| `1` | `2` | `2` | `9` | `2` |
+-----------+-----+-----+-----+-----+
| `2` | `4` | `8` | `8` | `9` |
+-----------+-----+-----+-----+-----+
## Syntaxe
```C
int tab[3][4]; // déclaration d'un tableau 4x3
tab[2][1]; // accès à la case 2, 1
tab[2][1] = 14; // assignation de 14 à la position 2, 1
```
# Tableau à deux dimensions (3/4)
## Exercice: déclarer et initialiser aléatoirement un tableau `50x100`
. . .
```C
#define NX 50
#define NY 100
int tab[NX][NY];
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
tab[i][j] = rand() % 256; // 256 niveaux de gris
}
}
```
## Exercice: afficher le tableau
. . .
```C
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
printf("%d ", tab[i][j]);
}
printf("\n");
}
```
# Tableau à deux dimensions (4/4)
## Attention
* Les éléments ne sont **jamais** initialisés.
* Les bornes ne sont **jamais** vérifiées.
```C
int tab[3][2] = { {1, 2}, {3, 4}, {5, 6} };
printf("%d\n", tab[2][1]); // affiche?
printf("%d\n", tab[10][9]); // affiche?
printf("%d\n", tab[3][1]); // affiche?
```
# La couverture de la reine
* Aux échecs la reine peut se déplacer horizontalement et verticalement
* Pour un échiquier `5x6`, elle *couvre* les cases comme ci-dessous
+-----+-----+-----+-----+-----+-----+-----+
| ` ` | `0` | `1` | `2` | `3` | `4` | `5` |
+-----+-----+-----+-----+-----+-----+-----+
| `0` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `1` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `2` | `*` | `*` | `R` | `*` | `*` | `*` |
+-----+-----+-----+-----+-----+-----+-----+
| `3` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `4` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
## Exercice
* En utilisant les conditions, les tableaux à deux dimensions, et des
`char` uniquement.
* Implémenter un programme qui demande à l'utilisateur d'entrer les
coordonnées de la reine et affiche un tableau comme ci-dessus pour un
échiquier `8x8`.
## Poster le résultat sur `Element`
# Représentation des nombres (1/2)
* Le nombre `247`.
## Nombres décimaux: Les nombres en base 10
+--------+--------+--------+
| $10^2$ | $10^1$ | $10^0$ |
+--------+--------+--------+
| `2` | `4` | `7` |
+--------+--------+--------+
$$
247 = 2\cdot 10^2 + 4\cdot 10^1 + 7\cdot 10^0.
$$
# Représentation des nombres (2/2)
* Le nombre `11110111`.
## Nombres binaires: Les nombres en base 2
+-------+-------+-------+-------+-------+-------+-------+-------+
| $2^7$ | $2^6$ | $2^5$ | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$ |
+-------+-------+-------+-------+-------+-------+-------+-------+
| `1` | `1` | `1` | `1` | `0` | `1` | `1` | `1` |
+-------+-------+-------+-------+-------+-------+-------+-------+
$$
1\cdot 2^7 + 1\cdot 2^6 +1\cdot 2^5 +1\cdot 2^4 +0\cdot 2^3 +1\cdot 2^2
+1\cdot 2^1 +1\cdot 2^0
$$
. . .
$$
= 247.
$$
# Conversion de décimal à binaire (1/N)
## Convertir 11 en binaire?
. . .
* On décompose en puissances de 2 en partant de la plus grande possible
```
11 / 8 = 1, 11 % 8 = 3
3 / 4 = 0, 3 % 4 = 3
3 / 2 = 1, 3 % 2 = 1
1 / 1 = 1, 1 % 1 = 0
```
* On a donc
$$
1011 \Rightarrow 1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot
2^0=11.
$$
# Conversion de décimal à binaire (2/N)
## Convertir un nombre arbitraire en binaire: 247?
* Par groupe établir un algorithme.
. . .
## Algorithme
1. Initialisation
```C
num = 247
while (2^N < num) {
N += 1
}
```
. . .
2. Boucle
```C
while (N >= 0) {
bit = num / 2^N
num = num % 2^N
N += 1
}
```
# TODO
## Entiers, entiers non-signés
## Complément à 1, 2
## Nombres à virgule flottante, simple/double précision
# Types composés: `struct`{.C} (1/6)
## Fractions
* Plusieurs variables qu'on aimerait regrouper dans un seul type: `struct`{.C}.
* Numérateur: `int num`;
* Dénominateur: `int denom`.
## Addition
```C
int num1 = 1, denom1 = 2;
int num2 = 1, denom2 = 3;
int num3 = num1 * denom2 + num2 * denom1;
int denom3 = denom1 * denom2;
```
## Pas super pratique....
# Types composés: `struct`{.C} (2/6)
## On peut faire mieux
```C
struct fraction { // déclaration du type
int32_t num, denom;
}
struct fraction frac; // déclaration de frac
```
# Types composés: `struct`{.C} (3/6)
## Simplifications
- `typedef`{.C} permet de définir un nouveau type.
```C
typedef unsinged int uint;
typedef struct fraction fraction_t;
typedef struct fraction {
int32_t num, denom;
} fraction_t;
```
- L'initialisation peut aussi se faire avec
```C
fraction_t frac = {1, -2}; // num = 1, denom = -2
fraction_t frac = {.denom = 1, .num = -2};
fraction_t frac = {.denom = 1}; // argl! .num non initialisé
fraction_t frac2 = frac; // copie
```
# Types composés: `struct`{.C} (4/6)
## Pointeurs
- Comme pour tout type, on peut avoir des pointeurs vers un `struct`{.C}.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
fraction_t *frac; // on crée un pointeur
frac->num = 1; // seg fault...
frac->denom = -1; // mémoire pas allouée.
```
![La représentation mémoire de
`fraction_t`.](figs/pointer_struct.svg){width=50%}
# Types composés: `struct`{.C} (5/6)
## Initialisation
- Avec le passage par **référence** on peut modifier un struct *en place*.
- Les champs sont accessible avec le sélecteur `->`{.C}
```C
void fraction_init(fraction_t *frac,
int32_t re, int32_t im)
{
// frac a déjà été allouée
frac->num = frac;
frac->denom = denom;
}
int main() {
fraction_t frac; // on alloue une fraction
fraction_init(&frac, 2, -1); // on l'initialise
}
```
# Types composés: `struct`{.C} (6/6)
## Initialisation version copie
* On peut allouer une fraction, l'initialiser et le retourner.
* La valeur retournée peut être copiée dans une nouvelle structure.
```C
fraction_t fraction_create(int32_t re, int32_t im) {
fraction_t frac;
frac.num = re;
frac.denom = im;
return frac;
}
int main() {
// on crée une fraction et on l'initialise
// en copiant la fraction créé par fraction_create
// deux allocation et une copie
fraction_t frac = fraction_create(2, -1);
}
```
# TODO jusqu'aux vacances
* Refactorisation
* Tris et complexité
* Récursivité
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment