Skip to content
Snippets Groups Projects
Verified Commit 6a00e745 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

maj 2023

parent db139f71
No related branches found
No related tags found
No related merge requests found
......@@ -483,474 +483,3 @@ $$
* Comportement indéfini!
# Nombres à virgule (1/3)
## Comment manipuler des nombres à virgule?
$$
0.1 + 0.2 = 0.3.
$$
Facile non?
. . .
## Et ça?
```C
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {
float a = atof(argv[1]);
float b = atof(argv[2]);
printf("%.10f\n", (double)(a + b));
}
```
. . .
## Que se passe-t-il donc?
# Nombres à virgule (2/3)
## Nombres à virgule fixe
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| $2^3$ | $2^2$ | $2^1$ | $2^0$ | `.` | $2^{-1}$ | $2^{-2}$ | $2^{-3}$ | $2^{-4}$ |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| `1` | `0` | `1` | `0` | `.` | `0` | `1` | `0` | `1` |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
## Qu'est-ce ça donne en décimal?
. . .
$$
2^3+2^1+\frac{1}{2^2}+\frac{1}{2^4} = 8+2+0.5+0.0625=10.5625.
$$
## Limites de cette représentation?
. . .
* Tous les nombres `> 16`.
* Tous les nombres `< 0.0625`.
* Tous les nombres dont la décimale est pas un multiple de `0.0625`.
# Nombres à virgule (3/3)
## Nombres à virgule fixe
* Nombres de $0=0000.0000$ à $15.9375=1111.1111$.
* Beaucoup de "trous" (au moins $0.0625$) entre deux nombres.
## Solution partielle?
. . .
* Rajouter des bits.
* Bouger la virgule.
# Nombres à virgule flottante (1/2)
## Notation scientifique
* Les nombres sont représentés en terme:
* Une mantisse
* Une base
* Un exposant
$$
\underbrace{22.1214}_{\mbox{nombre}}=\underbrace{221214}_{\mbox{mantisse}}\cdot
{\underbrace{10}_{\mbox{base}}}{\overbrace{^{-4}}^{\mbox{exp.}}},
$$
. . .
On peut donc séparer la représentation en 2:
* La mantisse
* L'exposant
# Nombres à virgule flottante (2/2)
## Quel est l'avantage?
. . .
On peut représenter des nombres sur énormément d'ordres de grandeur avec un
nombre de bits fixés.
## Différence fondamentale avec la virgule fixe?
. . .
La précision des nombres est **variable**:
* On a uniquement un nombre de chiffres **significatifs**.
$$
123456\cdot 10^{23}+ 123456\cdot 10^{-23}.
$$
## Quel inconvénient y a-t-il?
. . .
Ce mélange d'échelles entraîne un **perte de précision**.
# Nombres à virgule flottante simple précision (1/4)
Aussi appelés *IEEE 754 single-precision binary floating point*.
![Nombres à virgule flottante 32 bits. Source:
[Wikipedia](https://en.wikipedia.org/wiki/Single-precision_floating-point_format)](figs/Float_example_bare.svg)
## Spécification
* 1 bit de signe,
* 8 bits d'exposant,
* 23 bits de mantisse.
$$
(-1)^{b_{31}}\cdot 2^{(b_{30}b_{29}\dots b_{23})_{2}-127}\cdot (1.b_{22}b_{21}\dots b_{0})_{2},
$$
## Calculer la valeur décimale du nombre ci-dessus
# Nombres à virgule flottante simple précision (2/4)
![Un exercice de nombres à virgule flottante 32 bits. Source:
[Wikipedia](https://en.wikipedia.org/wiki/Single-precision_floating-point_format)](figs/Float_example.svg)
. . .
\begin{align}
\mbox{exposant}&=\sum_{i=0}^7 b_{23+i}2^i=2^2+2^3+2^4+2^5+2^6=124-127,\\
\mbox{mantisse}&=1+\sum_{i=1}^{23}b_{23-i}2^{-i}=1+2^{-2}=1.25,\\
&\Rightarrow (-1)^0\cdot 2^{-3}\cdot 1.25=0.15625
\end{align}
# Nombres à virgule flottante simple précision (3/4)
## Quel nombre ne peux pas être vraiment représenté?
. . .
## Zéro: exception pour l'exposant
* Si l'exposant est `00000000` (zéro)
$$
(-1)^{\mbox{sign}}\cdot 2^{-126}\cdot 0.\mbox{mantisse},
$$
* Sinon si l'exposant est `00000001` à `11111110`
$$
\mbox{valeur normale},
$$
* Sinon `11111111` donne `NaN`.
# Nombres à virgule flottante simple précision (4/4)
## Quels sont les plus petits/grands nombres positifs représentables?
. . .
\begin{align}
0\ 0\dots0\ 0\dots01&=2^{-126}\cdot 2^{-23}=1.4...\cdot
10^{-45},\\
0\ 1\dots10\ 1\dots1&=2^{127}\cdot (2-2^{-23})=3.4...\cdot
10^{38}.
\end{align}
## Combien de chiffres significatifs en décimal?
. . .
* 24 bits ($23 + 1$) sont utiles pour la mantisse, soit $2^{24}-1$:
* La mantisse fait $\sim2^{24}\sim 10^7$,
* Ou encore $\sim \log_{10}(2^{24})\sim 7$.
* Environ **sept** chiffres significatifs.
# Nombres à virgule flottante double précision (64bits)
## Spécification
* 1 bit de signe,
* 11 bits d'exposant,
* 52 bits de mantisse.
. . .
## Combien de chiffres significatifs?
* La mantisse fait $\sim 2^{53}\sim10^{16}$,
* Ou encore $\sim \log_{10}(2^{53})\sim 16$,
* Environ **seize** chiffres significatifs.
## Plus petit/plus grand nombre représentable?
. . .
* Plus petite mantisse et exposant: $\sim 2^{-52}\cdot 2^{-1022}\sim 4\cdot 10^{-324}$,
* Plus grande mantisse et exposant: $\sim 2\cdot 2^{1023}\sim \cdot 1.8\cdot 10^{308}$.
# Précision finie (1/3)
## Erreur de représentation
* Les nombres réels ont potentiellement un **nombre infini** de décimales
* $1/3=0.\overline{3}$,
* $\pi=3.1415926535...$.
* Les nombres à virgule flottante peuvent en représenter qu'un **nombre
fini**.
* $1/3\cong 0.33333$, erreur $0.00000\overline{3}$.
* $\pi\cong3.14159$, erreur $0.0000026535...$.
On rencontre donc des **erreurs de représentation** ou **erreurs
d'arrondi**.
. . .
## Et quand on calcule?
* Avec deux chiffres significatifs
\begin{align}
&8.9+(0.02+0.04)=8.96=9.0,\\
&(8.9+0.02)+0.04=8.9+0.04=8.9.
\end{align}
. . .
## Même pas associatif!
# Précision finie (2/3)
## Erreur de représentation virgule flottante
$$
(1.2)_{10} = 1.\overline{0011}\cdot 2^0\Rightarrow 0\ 01111111\
00110011001100110011010.
$$
Erreur d'arrondi dans les deux derniers bits et tout ceux qui viennent
ensuite
$$
\varepsilon_2 = (00000000000000000000011)_2.
$$
Ou en décimal
$$
\varepsilon_{10} = 4.76837158203125\cdot 10^{-8}.
$$
# Précision finie (3/3)
## Comment définir l'égalité de 2 nombres à virgule flottante?
. . .
Ou en d'autres termes, pour quel $\varepsilon>0$ (appelé `epsilon-machine`) on a
$$
1+\varepsilon = 1,
$$
pour un nombre à virgule flottante?
. . .
Pour un `float` (32 bits) la différence est à
$$
2^{-23}=1.19\cdot 10^{-7},
$$
Soit la précision de la mantisse.
## Comment le mesurer (par groupe)?
. . .
```C
float eps = 1.0;
while ((float)1.0 + (float)0.5 * eps != (float)1.0) {
eps = (float)0.5 * eps;
}
printf("eps = %g\n", eps);
```
# Erreurs d'arrondi
Et jusqu'ici on a encore pas fait d'arithmétique!
## Multiplication avec deux chiffres significatifs, décimal
$$
(1.1)_{10}\cdot (1.1)_{10}=(1.21)_{10}=(1.2)_{10}.
$$
En continuant ce petit jeu:
$$
\underbrace{1.1\cdot 1.1\cdots 1.1}_{\mbox{10 fois}}=2.0.
$$
Alors qu'en réalité
$$
1.1^{10}=2.5937...
$$
Soit une erreur de près de 1/5e!
. . .
## Le même phénomène se produit (à plus petite échelle) avec les `float` ou `double`.
# And now for something completely different
\Huge La récursivité
# Exemple de récursivité (1/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On empile les appels
+----------------+----------------+----------------+----------------+
| | | | `factorial(1)` |
+----------------+----------------+----------------+----------------+
| | | `factorial(2)` | `factorial(2)` |
+----------------+----------------+----------------+----------------+
| | `factorial(3)` | `factorial(3)` | `factorial(3)` |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `factorial(4)` |
+----------------+----------------+----------------+----------------+
# Exemple de récursivité (2/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On dépile les calculs
+----------------+----------------+----------------+----------------+
| `1` | | | |
+----------------+----------------+----------------+----------------+
| `factorial(2)` | `2 * 1 = 2` | | |
+----------------+----------------+----------------+----------------+
| `factorial(3)` | `factorial(3)` | `3 * 2 = 6` | |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `4 * 6 = 24` |
+----------------+----------------+----------------+----------------+
# La récursivité (1/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
# La récursivité (2/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) { // Condition de récursivité
return n * factorial(n - 1);
} else { // Condition d'arrêt
return 1;
}
}
```
# La récursivité (3/4)
## Exercice: trouver l'$\varepsilon$-machine pour un `double`
. . .
Rappelez-vous vous l'avez fait en style **impératif** plus tôt.
. . .
```C
double epsilon_machine(double eps) {
if (1.0 + eps != 1.0) {
return epsilon_machine(eps / 2.0);
} else {
return eps;
}
}
```
# La récursivité (4/4)
\footnotesize
## Exercice: que fait ce code récursif?
```C
void recurse(int n) {
printf("%d ", n % 2);
if (n / 2 != 0) {
recurse(n / 2);
} else {
printf("\n");
}
}
recurse(13);
```
. . .
```C
recurse(13): n = 13, n % 2 = 1, n / 2 = 6,
recurse(6): n = 6, n % 2 = 0, n / 2 = 3,
recurse(3): n = 3, n % 2 = 1, n / 2 = 1,
recurse(1): n = 1, n % 2 = 1, n / 2 = 0.
// affiche: 1 1 0 1
```
. . .
Affiche la représentation binaire d'un nombre!
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment