Skip to content
Snippets Groups Projects
Commit ce8dfb18 authored by Cirilli Simon's avatar Cirilli Simon
Browse files

Never gonna give you up

parent dc77454a
Branches main
No related tags found
No related merge requests found
No preview for this file type
No preview for this file type
......@@ -127,20 +127,20 @@ unet_model.compile(optimizer='adam', loss=focal_loss(), metrics=['accuracy', 'me
print("model compiled")
train_image_list = os.listdir('./image_resized/image')
test_image_list = os.listdir('./image_resized/masks')
train_image_list = os.listdir('../image_resized/image')
test_image_list = os.listdir('../image_resized/masks')
number_of_image = sys.argv[1]
if number_of_image == 'all':
train_image_list = os.listdir('./image_resized/image')
test_image_list = os.listdir('./image_resized/masks')
train_image_list = os.listdir('../image_resized/image')
test_image_list = os.listdir('../image_resized/masks')
else:
train_image_list = os.listdir('./image_resized/image')[:int(number_of_image)]
test_image_list = os.listdir('./image_resized/masks')[:int(number_of_image)]
train_image_list = os.listdir('../image_resized/image')[:int(number_of_image)]
test_image_list = os.listdir('../image_resized/masks')[:int(number_of_image)]
# np load the images and masks
train_image_list = [np.load('./image_resized/image/' + image) for image in train_image_list]
test_image_list = [np.load('./image_resized/masks/' + image) for image in test_image_list]
train_image_list = [np.load('../image_resized/image/' + image) for image in train_image_list]
test_image_list = [np.load('../image_resized/masks/' + image) for image in test_image_list]
model_saver = keras.callbacks.ModelCheckpoint(model_save_path, verbose=1, save_best_only=False, save_freq='epoch')
......
......@@ -7,8 +7,8 @@ import shutil
import sys
# load dataset in AED/training_images
train_path = 'AED/training_images'
test_path = 'AED/test_images'
train_path = '../AED/training_images'
test_path = '../AED/test_images'
train_image_list = os.listdir(train_path)
test_image_list = os.listdir(test_path)
......@@ -28,8 +28,8 @@ train_masks = []
test_masks = []
# get the point for each image where elephant are located put in a mask
df_train_csv = pd.read_csv('AED/training_elephants.csv')
df_test_csv = pd.read_csv('AED/test_elephants.csv')
df_train_csv = pd.read_csv('../AED/training_elephants.csv')
df_test_csv = pd.read_csv('../AED/test_elephants.csv')
def getCoordinatesFromImage(imageId):
imageId = imageId.split('.')[0]
......@@ -90,25 +90,28 @@ def prepare_data(image_list, path):
# count the number of white pixel in the mask => keep only the image with elephant
nb_white_pixel = np.count_nonzero(mask_crop)
if nb_white_pixel > 0:
np.save('./image_resized/image/' + str(image) + "_" + str(cpt), image_crop)
np.save('./image_resized/masks/' + str(image) + "_" + str(cpt), mask_crop)
np.save('../image_resized/image/' + str(image) + "_" + str(cpt), image_crop)
np.save('../image_resized/masks/' + str(image) + "_" + str(cpt), mask_crop)
if firstTimeForImage:
next_background = True
firstTimeForImage = False
elif next_background:
np.save('./image_resized/image/' + str(image) + "_" + str(cpt), image_crop)
np.save('./image_resized/masks/' + str(image) + "_" + str(cpt), mask_crop)
np.save('../image_resized/image/' + str(image) + "_" + str(cpt), image_crop)
np.save('../image_resized/masks/' + str(image) + "_" + str(cpt), mask_crop)
next_background = False
cpt += 1
print("Image " + str(image_counter) + " done")
image_counter += 1
shutil.rmtree('./image_resized/image')
shutil.rmtree('./image_resized/masks')
if os.path.exists('../image_resized/image'):
shutil.rmtree('../image_resized/image')
os.mkdir('./image_resized/image')
os.mkdir('./image_resized/masks')
if os.path.exists('../image_resized/masks'):
shutil.rmtree('../image_resized/masks')
os.mkdir('../image_resized/image')
os.mkdir('../image_resized/masks')
# prepare data
......
......@@ -9,7 +9,7 @@ import cv2
# plot the image
train_path = 'AED/training_images'
train_path = '../AED/training_images'
train_image_list = os.listdir(train_path)
for image in train_image_list:
......
......@@ -16,18 +16,18 @@ def focal_loss(gamma=2., alpha=.25):
# model = keras.models.load_model('model_1000')
model = keras.models.load_model('model_1000', custom_objects={'focal_loss_fixed': focal_loss()})
model = keras.models.load_model('../model_1000', custom_objects={'focal_loss_fixed': focal_loss()})
# test the model on an image and show the result
# open the
# load all image with numpy
image_list = os.listdir("./image_resized/image")
mask_list = os.listdir("./image_resized/masks")
image_list = os.listdir("../image_resized/image")
mask_list = os.listdir("../image_resized/masks")
for i in range(len(image_list)):
image_list[i] = np.load(os.path.join("./image_resized/image", image_list[i]))
mask_list[i] = np.load(os.path.join("./image_resized/masks", mask_list[i]))
image_list[i] = np.load(os.path.join("../image_resized/image", image_list[i]))
mask_list[i] = np.load(os.path.join("../image_resized/masks", mask_list[i]))
mask = model.predict(np.expand_dims(image_list[i], axis=0))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment