Skip to content
Snippets Groups Projects
Commit 03d0923a authored by Lovino Maxime's avatar Lovino Maxime
Browse files

added missing i in TFD

parent 15c869da
Branches
Tags
No related merge requests found
......@@ -2830,9 +2830,9 @@ Montrons à présent que la transformée inverse discrète de la transformée de
discrète donne bien la suite de départ
\begin{align}
f[n]&=\frac{1}{N}\sum_{k=0}^{N-1} \fh[k] e^{\frac{2\pi i k n}{N}},\nonumber\\
&=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{-\frac{2\pi k m}{N}} e^{\frac{2\pi i k n}{N}},\nonumber\\
&=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{\frac{2\pi k (n-m)}{N}},\nonumber\\
&=\frac{1}{N}\sum_{m=0}^{N-1} f[m] \sum_{k=0}^{N-1} e^{\frac{2\pi k (n-m)}{N}},\nonumber\\
&=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{-\frac{2\pi i k m}{N}} e^{\frac{2\pi i k n}{N}},\nonumber\\
&=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{\frac{2\pi i k (n-m)}{N}},\nonumber\\
&=\frac{1}{N}\sum_{m=0}^{N-1} f[m] \sum_{k=0}^{N-1} e^{\frac{2\pi i k (n-m)}{N}},\nonumber\\
&=\frac{1}{N}\sum_{m=0}^{N-1} f[m] N \delta_{nm},\nonumber\\
&=f[n].
\end{align}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment