Skip to content
Snippets Groups Projects
Verified Commit a2e0cbb2 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

added 2024

parent ff338371
Branches
No related tags found
No related merge requests found
---
title: "Théorie des graphes"
date: "2024-05-21"
---
# Les graphes
\Huge
Les graphes
# Les graphes! Historique
**Un mini-peu d'histoire...**
## L. Euler et les 7 ponts de Koenigsberg:
* Existe-t-il une promenade sympa, passant **une seule fois** par les 7 ponts et revenant au point de départ?
![Les ponts c'est beau. Source: Wikipédia, <https://bit.ly/37h0yOG>](figs/Konigsberg_bridges.png){width=50%}
. . .
* Réponse: ben non!
# Utilisation quotidienne
## Réseau social
![Source, Wikipedia: <https://bit.ly/3kG6cgo>](figs/Social_Network.svg){width=40%}
* Chaque sommet est un individu.
* Chaque trait une relation d'amitié.
* Miam, Miam, Facebook.
# Utilisation quotidienne
## Moteurs de recherche
![Source, Wikipedia: <https://bit.ly/3kG6cgo>](figs/PageRanks-Example.svg){width=40%}
* Sommet est un site.
* Liens sortants;
* Liens entrants;
* Notion d'importance d'un site: combien de liens entrants, pondérés par l'importance du site.
* Miam, Miam, Google (PageRank).
# Introduction
## Définition, plus ou moins
* Un graphe est un ensemble de sommets, reliés par des lignes ou des flèches.
![Deux exemples de graphes.](figs/ex_graphes.png)
* Des sommets (numérotés 1 à 6);
* Connectés ou pas par des traits ou des flèches!
# Généralités
## Définitions
* Un **graphe** $G(V, E)$ est constitué
* $V$: un ensemble de sommets;
* $E$: un ensemble d'arêtes.
* Une **arête** relie une **paire** de sommets de $V$.
## Remarques
* Il y a **au plus** une arête $E$ par paire de sommets de $V$.
* La **complexité** d'un algorithme dans un graphe se mesure en terme de $|E|$ et $|V|$, le nombre d'éléments de $E$ et $V$ respectivement.
# Généralités
## Notations
* Une arête d'un graphe **non-orienté** est représentée par une paire **non-ordonnée** $(u,v)=(v,u)$, avec $u,v\in V$.
* Les arêtes ne sont pas orientées dans un graphe non-orienté (elles sont bi-directionnelles, peuvent être parcourues dans n'importe quel ordre).
## Exemple
::: columns
:::: column
![Un graphe non-orienté.](figs/ex_graphe_non_oriente.svg)
::::
:::: column
## Que valent $V$, $|V|$, $E$, et $|E|$?
. . .
\begin{align*}
V&=\{1, 2, 3, 4\},\\
|V|&=4,\\
E&=\{(1,2),(2,3),(2,4),(4,1)\},\\
|E|&=4.
\end{align*}
::::
:::
# Généralités
## Notations
* Une arête d'un graphe **orienté** est représentée par une paire **ordonnée** $(u,v)\neq(v,u)$, avec $u,v\in V$.
* Les arêtes sont orientées dans un graphe orienté (étonnant non?).
## Exemple
::: columns
:::: column
![Un graphe orienté.](figs/ex_graphe_oriente.svg)
::::
:::: column
## Que valent $V$, $|V|$, $E$, et $|E|$?
. . .
\begin{align*}
V&=\{1, 2, 3, 4\},\\
|V|&=4,\\
E&=\{(1,2),(2,3),(2,4),(4,1),(4,2)\},\\
|E|&=5.
\end{align*}
::::
:::
# Généralités
## Définition
* Le somme $v$ est **adjacent** au sommet $u$, si et seulement si $(u,v)\in E$;
* Si un graphe non-orienté contient une arête $(u,v)$, $v$ est adjacent à $u$ et $u$ et adjacent à $v$.
## Exemple
::: columns
:::: column
![Sommet $a$ adjacent à $c$, $c$ adjacent à $a$.](figs/ex_adj_non_or.svg){width=80%}
::::
:::: column
![Sommet $a$ adjacent à $c$.](figs/ex_adj_or.svg){width=80%}
::::
:::
# Généralités
## Définition
* Un **graphe pondéré** ou **valué** est un graphe dont chaque arête a un
poids associé, habituellement donné par une fonction de pondération $w:E\rightarrow\mathbb{R}$.
## Exemples
![Graphe pondéré orienté (gauche) et non-orienté (droite).](figs/ex_graph_pond.pdf){width=80%}
# Généralités
## Définition
* Dans un graphe $G(V,E)$, une **chaîne** reliant un sommet $u$ à un sommet $v$ est une suite d'arêtes entre les sommets, $w_0$, $w_1$, ..., $w_k$, telles que
$$
(w_i, w_{i+1})\in E,\quad u=w_0,\quad v=w_k,\quad \mbox{pour }0\leq i< k,
$$
avec $k$ la longueur de la chaîne (le nombre d'arêtes du chemin).
## Exemples
![Illustration d'une chaîne, ou pas chaîne dans un graphe.](figs/ex_graphe_chaine.pdf){width=80%}
# Généralités
## Définition
* Une **chaîne élémentaire** est une chaîne dont tous les sommets sont distincts, sauf les extrémités qui peuvent être égales
## Exemples
![Illustration d'une chaîne élémentaire.](figs/ex_graphe_chaine_elem.pdf){width=80%}
# Généralités
## Définition
* Une **boucle** est une arête $(v,v)$ d'un sommet vers lui-même.
## Exemples
![Illustration d'une boucle.](figs/ex_graphe_boucle.pdf){width=40%}
# Généralités
## Définition
* Un graphe non-orienté est dit **connexe**, s'il existe un chemin reliant n'importe quelle paire de sommets distincts.
## Exemples
\
::: columns
:::: column
![Graphe connexe. Source, Wikipédia: <https://bit.ly/3yiUzUv>](figs/graphe_connexe.svg){width=80%}
::::
:::: column
![Graphe non-connexe avec composantes connexes. Source, Wikipédia: <https://bit.ly/3KJB76d>](figs/composantes_connexes.svg){width=60%}
::::
:::
# Généralités
## Définition
* Un graphe orienté est dit **fortement connexe**, s'il existe un chemin reliant n'importe quelle paire de sommets distincts.
## Exemples
\
::: columns
:::: column
![Graphe fortement connexe.](figs/ex_graph_fort_connexe.pdf){width=60%}
::::
:::: column
![Composantes fortement connexes. Source, Wikipédia: <https://bit.ly/3w5PL2l>](figs/composantes_fortement_connexes.svg){width=100%}
::::
:::
# Généralités
## Définition
* Un **cycle** dans un graphe *non-orienté* est une chaîne de longueur $\geq 3$ telle que le 1er sommet de la chaîne est le même que le dernier, et dont les arêtes sont distinctes.
* Pour un graphe *orienté* on parle de **circuit**.
* Un graphe sans cycles est dit **acyclique**.
## Exemples
![Illustration de cycles, ou pas.](figs/ex_graphe_cycle.pdf){width=100%}
# Question de la mort
* Qu'est-ce qu'un graphe connexe acyclique?
. . .
* Un arbre!
# Représentations
* La complexité des algorithmes sur les graphes s'expriment en fonction du nombre de sommets $V$, et du nombre d'arêtes $E$:
* Si $|E|\sim |V|^2$, on dit que le graphe est **dense**.
* Si $|E|\sim |V|$, on dit que le graphe est **peu dense**.
* Selon qu'on considère des graphes denses ou peu denses, différentes structure de données peuvent être envisagées.
## Question
* Comment peut-on représenter un graphe informatiquement? Des idées (réflexion de quelques minutes)?
. . .
* Matrice/liste d'adjacence.
# Matrice d'adjacence
* Soit le graphe $G(V,E)$, avec $V=\{1, 2, 3, ..., n\}$;
* On peut représenter un graphe par une **matrice d'adjacence**, $A$, de dimension $n\times n$ définie par
$$
A_{ij}=\left\{ \begin{array}{ll}
1 & \mbox{si } i,j\in E,\\
0 & \mbox{sinon}.
\end{array} \right.
$$
::: columns
:::: column
## Exemple
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---4;
2---5;
4---5;
5---3;
```
::::
:::: column
\footnotesize
## Quelle matrice d'adjacence?
. . .
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 1 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
4 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 1 | 0
```
::::
:::
# Matrice d'adjacence
## Remarques
* Zéro sur la diagonale.
* La matrice d'un graphe non-orienté est symétrique
$$
A_{ij}=A_{ji}, \forall i,j\in[1,n]
$$.
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---4;
2---5;
4---5;
5---3;
```
::::
:::: column
\footnotesize
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 1 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
4 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 1 | 0
```
::::
:::
# Matrice d'adjacence
* Pour un graphe orienté (digraphe)
::: columns
:::: column
## Exemple
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
2-->1;
1-->4;
2-->5;
5-->2;
4-->5;
5-->3;
```
::::
:::: column
\footnotesize
## Quelle matrice d'adjacence?
. . .
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 0 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 0
---||---|---|---|---|---
4 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 0 | 0
```
::::
:::
* La matrice d'adjacence n'est plus forcément symétrique
$$
A_{ij}\neq A_{ji}.
$$
# Stockage
* Quel est l'espace nécessaire pour stocker une matrice d'adjacence pour un graphe orienté?
. . .
* $\mathcal{O}(|V|^2)$.
* Quel est l'espace nécessaire pour stocker une matrice d'adjacence pour un graphe non-orienté?
. . .
* $\mathcal{O}(|V|-1)|V|/2$.
# Considérations d'efficacité
* Dans quel type de graphes la matrice d'adjacence est utile?
. . .
* Dans les graphes denses.
* Pourquoi?
. . .
* Dans les graphes peu denses, la matrice d'adjacence est essentiellement composée de `0`.
## Remarque
* Dans la majorité des cas, les grands graphes sont peu denses.
* Comment représenter un graphe autrement?
# La liste d'adjacence (non-orienté)
* Pour chaque sommet $v\in V$, stocker les sommets adjacents à $v$-
* Quelle structure de données pour la liste d'adjacence?
. . .
* Tableau de liste chaînée, vecteur (tableau dynamique), etc.
::: columns
:::: column
## Exemple
![Un graphe non-orienté.](figs/ex_graph_adj.pdf){width=80%}
::::
:::: column
## Quelle liste d'adjacence?
. . .
![La liste d'adjacence.](figs/ex_graph_list_adj.pdf)
::::
:::
# La liste d'adjacence (orienté)
::: columns
:::: column
## Quelle liste d'adjacence pour...
* Matrix (2min)
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
0-->1;
0-->2;
1-->2;
3-->0;
3-->1;
3-->2;
```
::::
:::: column
```
```
::::
:::
# Complexité
## Stockage
* Quelle espace est nécessaire pour stocker une liste d'adjacence (en fonction de $|E|$ et $|V|$)?
. . .
$$
\mathcal{O}(|E|)
$$
* Pour les graphes *non-orientés*: $\mathcal{O}(2|E|)$.
* Pour les graphes *orientés*: $\mathcal{O}(|E|)$.
## Définition
* Le **degré** d'un sommet $v$, est le nombre d'arêtes incidentes du sommet (pour les graphes orientés on a un degré entrant ou sortant).
* Comment on retrouve le degré de chaque sommet avec la liste d'adjacence?
. . .
* C'est la longueur de la liste chaînée.
# Parcours
* Beaucoup d'applications nécessitent de parcourir des graphes:
* Trouver un chemin d'un sommet à un autre;
* Trouver si le graphe est connexe;
* Il existe *deux* parcours principaux:
* en largeur (Breadth-First Search);
* en profondeur (Depth-First Search).
* Ces parcours créent *un arbre* au fil de l'exploration (si le graphe est non-connexe cela crée une *forêt*, un ensemble d'arbres).
# Illustration: parcours en largeur
![Le parcours en largeur.](figs/parcours_larg.pdf){width=80%}
# Exemple
## Étape par étape (blanc non-visité)
![Initialisation.](figs/parcours_larg_0.pdf){width=50%}
## Étape par étape (gris visité)
![On commence en `x`.](figs/parcours_larg_1.pdf){width=50%}
# Exemple
## Étape par étape
![On commence en `x`.](figs/parcours_larg_1.pdf){width=50%}
## Étape par étape (vert à visiter)
![Vister `w`, `t`, `y`.](figs/parcours_larg_2.pdf){width=50%}
# Exemple
## Étape par étape
![Vister `w`, `t`, `y`.](figs/parcours_larg_2.pdf){width=50%}
## Étape par étape
![`w`, `t`, `y` visités. `u`, `s` à visiter.](figs/parcours_larg_3.pdf){width=50%}
# Exemple
## Étape par étape
![`w`, `t`, `y` visités. `u`, `s` à visiter.](figs/parcours_larg_3.pdf){width=50%}
## Étape par étape
![`u`, `s`, visités. `r` à visiter.](figs/parcours_larg_4.pdf){width=50%}
# Exemple
## Étape par étape
![`u`, `s`, visités. `r` à visiter.](figs/parcours_larg_4.pdf){width=50%}
## Étape par étape
![`r` visité. `v` à visiter.](figs/parcours_larg_5.pdf){width=50%}
# Exemple
## Étape par étape
![`r` visité. `v` à visiter.](figs/parcours_larg_5.pdf){width=50%}
## Étape par étape
![The end. Plus rien à visiter!](figs/parcours_larg_6.pdf){width=50%}
# En faisant ce parcours...
::: columns
:::: column
## Du parcours de l'arbre
![](figs/parcours_larg_6.pdf){width=100%}
::::
:::: column
## Quel arbre est créé par le parcours (2min)?
. . .
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
0[x]-->1[w];
0-->2[t];
0-->3[y];
2-->9[u];
1-->4[s];
4-->5[r];
5-->6[v];
```
::::
:::
## Remarques
* Le parcours dépend du point de départ dans le graphe.
* L'arbre sera différent en fonction du noeud de départ, et de l'ordre de parcours des voisins d'un noeud.
# Le parcours en largeur
## L'algorithme, idée générale (3min, matrix)?
. . .
```C
v = un sommet du graphe
i = 1
pour sommet dans graphe et sommet non-visité
visiter(v, sommet, i) // marquer sommet à distance i visité
i += 1
```
## Remarque
* `i` est la distance de plus cours chemin entre `v` et les sommets en cours de visite.
# Le parcours en largeur
## L'algorithme, pseudo-code (3min, matrix)?
* Comment garder la trace de la distance?
. . .
* Utilisation d'une **file**
. . .
```C
initialiser(graphe) // tous sommets sont non-visités
file = visiter(sommet, vide) // sommet est un sommet du graphe au hasard
tant que !est_vide(file)
v = défiler(file)
file = visiter(v, file)
```
## Que fait visiter?
```
file visiter(sommet, file)
sommet = visité
pour w = chaque arête de sommet
si w != visité
file = enfiler(file, w)
retourne file
```
# Exercice (5min)
## Appliquer l'algorithme sur le graphe
![](figs/parcours_larg_0.pdf){width=50%}
* En partant de `v`, `s`, ou `u` (par colonne de classe).
* Bien mettre à chaque étape l'état de la file.
# Complexité du parcours en largeur
## Étape 1
* Extraire un sommet de la file;
## Étape 2
* Traîter tous les sommets adjacents.
## Quelle est la complexité?
. . .
* Étape 1: $\mathcal{O}(|V|)$,
* Étape 2: $\mathcal{O}(2|E|)$,
* Total: $\mathcal{O}(|V| + |2|E|)$.
# Exercice
* Établir la liste d'adjacence et appliquer l'algorithme de parcours en largeur au graphe
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---3;
1---4;
2---3;
2---6;
3---6;
3---4;
3---5;
4---5;
```
# Illustration: parcours en profondeur
![Le parcours en profondeur. À quel parcours d'arbre cela ressemble-t-il?](figs/parcours_prof.pdf){width=80%}
# Parcours en profondeur
## Idée générale
* Initialiser les sommets comme non-lus
* Visiter un sommet
* Pour chaque sommet visité, on visite un sommet adjacent s'il est pas encore visité récursivement.
## Remarque
* La récursivité est équivalent à l'utilisation d'une **pile**.
# Parcours en profondeur
## Pseudo-code (5min)
. . .
```C
initialiser(graphe) // tous sommets sont non-visités
pile = visiter(sommet, vide) // sommet est un sommet du graphe au hasard
tant que !est_vide(pile)
v = dépiler(pile)
pile = visiter(v, pile)
```
## Que fait visiter?
. . .
```C
pile visiter(sommet, pile)
sommet = visité
pour w = chaque arête de sommet
si w != visité
pile = empiler(pile, w)
retourne pile
```
# Exercice
* Établir la liste d'adjacence et appliquer l'algorithme de parcours en profondeur au graphe
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---3;
1---4;
2---3;
2---6;
3---6;
3---4;
3---5;
4---5;
```
# Interprétation des parcours
* Un graphe vu comme espace d'états (sommet: état, arête: action);
* Labyrinthe;
* Arbre des coups d'un jeu.
. . .
* BFS (Breadth-First) ou DFS (Depth-First) parcourent l'espace des états à la recherche du meilleur mouvement.
* Les deux parcourent *tout* l'espace;
* Mais si l'arbre est grand, l'espace est gigantesque!
. . .
* Quand on a un temps limité
* BFS explore beaucoup de coups dans un futur proche;
* DFS explore peu de coups dans un futur lointain.
# Contexte: les réseaux (informatique, transport, etc.)
* Graphe orienté;
* Source: sommet `s`;
* Destination: sommet `t`;
* Les arêtes ont des poids (coût d'utilisation, distance, etc.);
* Le coût d'un chemin est la somme des poids des arêtes d'un chemin.
## Problème à résoudre
* Quel est le plus court chemin entre `s` et `t`.
# Exemples d'application de plus court chemin
## Devenir riches!
* On part d'un tableau de taux de change entre devises.
* Quelle est la meilleure façon de convertir l'or en dollar?
![Taux de change.](figs/taux_change.pdf){width=80%}
. . .
* 1kg d'or => 327.25 dollars
* 1kg d'or => 208.1 livres => 327 dollars
* 1kg d'or => 455.2 francs => 304.39 euros => 327.28 dollars
# Exemples d'application de plus court chemin
## Formulation sous forme d'un graphe: Comment (3min)?
![Taux de change.](figs/taux_change.pdf){width=80%}
# Exemples d'application de plus court chemin
## Formulation sous forme d'un graphe: Comment (3min)?
![Graphes des taux de change.](figs/taux_change_graphe.pdf){width=60%}
* Un sommet par devise;
* Une arête orientée par transaction possible avec le poids égal au taux de change;
* Trouver le chemin qui maximise le produit des poids.
. . .
## Problème
* On aimerait plutôt avoir une somme...
# Exemples d'application de plus court chemin
## Conversion du problème en plus court chemin
* Soit `taux(u, v)` le taux de change entre la devise `u` et `v`.
* On pose `w(u,w)=-log(taux(u,v))`
* Trouver le chemin poids minimal pour les poids `w`.
![Graphe des taux de change avec logs.](figs/taux_change_graphe_log.pdf){width=60%}
* Cette conversion se base sur l'idée que
$$
\log(u\cdot v)=\log(u)+\log(v).
$$
# Applications de plus courts chemins
## Quelles applications voyez-vous?
. . .
* Déplacement d'un robot;
* Planificaiton de trajet / trafic urbain;
* Routage de télécommunications;
* Réseau électrique optimal;
* ...
# Plus courts chemins à source unique
* Soit un graphe, $G=(V, E)$, une fonction de pondération $w:E\rightarrow\mathbb{R}$, et un sommet $s\in V$
* Trouver pour tout sommet $v\in V$, le chemin de poids minimal reliant $s$ à $v$.
* Algorithmes standards:
* Dijkstra (arêtes de poids positif seulement);
* Bellman-Ford (arêtes de poids positifs ou négatifs, mais sans cycles).
* Comment résoudre le problèmes si tous les poids sont les mêmes?
. . .
* Un parcours en largeur!
# Algorithme de Dijkstra
## Comment chercher pour un plus court chemin?
. . .
```
si distance(u,v) > distance(u,w) + distance(w,v)
on passe par w plutôt qu'aller directement
```
# Algorithme de Dijkstra (1 à 5)
* $D$ est le tableau des distances au sommet $1$: $D[7]$ est la distance de 1 à 7.
* Le chemin est pas forcément direct.
* $S$ est le tableau des sommets visités.
::: columns
:::: column
![Initialisation.](figs/dijkstra_0.png)
::::
:::: column
. . .
![1 visité, `D[2]=1`, `D[4]=3`.](figs/dijkstra_1.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 2.](figs/dijkstra_1.png)
::::
:::: column
. . .
![2 visité, `D[3]=2`, `D[7]=3`.](figs/dijkstra_2.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 3.](figs/dijkstra_2.png)
::::
:::: column
. . .
![3 visité, `D[7]=3` inchangé, `D[6]=6`.](figs/dijkstra_3.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 4 ou 7.](figs/dijkstra_3.png)
::::
:::: column
. . .
![4 visité, `D[7]=3` inchangé, `D[5]=9`.](figs/dijkstra_4.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est `7`.](figs/dijkstra_4.png)
::::
:::: column
. . .
![7 visité, `D[5]=7`, `D[6]=6` inchangé.](figs/dijkstra_5.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 6.](figs/dijkstra_5.png)
::::
:::: column
. . .
![`6` visité, `D[5]=7` inchangé.](figs/dijkstra_6.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 5 et c'est la cible.](figs/dijkstra_6.png)
::::
:::: column
. . .
![The end, tous les sommets ont été visités.](figs/dijkstra_7.png)
::::
:::
# Algorithme de Dijkstra
## Idée générale
* On assigne à chaque noeud une distance $0$ pour $s$, $\infty$ pour les autres.
* Tous les noeuds sont marqués non-visités.
* Depuis du noeud courant, on suit chaque arête du noeud vers un sommet non visité et on calcule le poids du chemin à chaque voisin et on met à jour sa distance si elle est plus petite que la distance du noeud.
* Quand tous les voisins du noeud courant ont été visités, le noeud est mis à visité (il ne sera plus jamais visité).
* Continuer avec le noeud à la distance la plus faible.
* L'algorithme est terminé losrque le noeud de destination est marqué comme visité, ou qu'on a plus de noeuds qu'on peut visiter et que leur distance est infinie.
# Algorithme de Dijkstra
## Pseudo-code (5min, matrix)
\footnotesize
. . .
```C
tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t // on a atteint la cible
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
// on met à jour la distance du voisin en passant par u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
retourne distance
```
# Algorithme de Dijkstra
* Cet algorithme, nous donne le plus court chemin mais...
* ne nous donne pas le chemin!
## Comment modifier l'algorithme pour avoir le chemin?
. . .
* Pour chaque nouveau noeud à visiter, il suffit d'enregistrer d'où on est venu!
* On a besoin d'un tableau `precedent`.
## Modifier le pseudo-code ci-dessus pour ce faire (3min matrix)
# Algorithme de Dijkstra
\footnotesize
```C
tab, tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
precedent[v] = indéfini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
retourne distance, precedent
```
# Algorithme de Dijkstra
## Comment reconstruire un chemin ?
. . .
```C
pile parcours(precedent, s, t)
sommets = vide
u = t
// on a atteint t ou on ne connait pas de chemin
si u != s && precedent[u] != indéfini
tant que vrai
sommets = empiler(sommets, u)
u = precedent[u]
si u == s // la source est atteinte
retourne sommets
retourne sommets
```
# Algorithme de Dijkstra amélioré
## On peut améliorer l'algorithme
* Avec une file de priorité!
## Une file de priorité est
* Une file dont chaque élément possède une priorité,
* Elle existe en deux saveurs: `min` ou `max`:
* File `min`: les éléments les plus petits sont retirés en premier.
* File `max`: les éléments les plus grands sont retirés en premier.
* On regarde l'implémentation de la `max`.
## Comment on fait ça?
. . .
* On insère les éléments à haute priorité tout devant dans la file!
# Les files de priorité
## Trois fonction principales
```C
booléen est_vide(element) // triviale
element enfiler(element, data, priorite)
data defiler(element)
rien changer_priorite(element, data, priorite)
nombre priorite(element) // utilitaire
```
## Pseudo-implémentation: structure (1min)
. . .
```C
struct element
data
priorite
element suivant
```
# Les files de priorité
## Pseudo-implémentation: enfiler (2min)
. . .
```C
element enfiler(element, data, priorite)
n_element = creer_element(data, priorite)
si est_vide(element)
retourne n_element
si priorite(n_element) > priorite(element)
n_element.suivant = element
retourne n_element
sinon
tmp = element
prec = element
tant que !est_vide(tmp) && priorite < priorite(tmp)
prec = tmp
tmp = tmp.suivant
prev.suivant = n_element
n_element.suivant = tmp
retourne element
```
# Les files de priorité
## Pseudo-implémentation: defiler (2min)
. . .
```C
data, element defiler(element)
si est_vide(element)
retourne AARGL!
sinon
tmp = element.data
n_element = element.suivant
liberer(element)
retourne tmp, n_element
```
# Algorithme de Dijkstra avec file de priorité min
```C
distance, precedent dijkstra(graphe, s, t):
distance[source] = 0
fp = file_p_vide()
pour v dans sommets(graphe)
si v != s
distance[v] = infini
precedent[v] = indéfini
fp = enfiler(fp, v, distance[v])
tant que !est_vide(fp)
u, fp = defiler(fp)
pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
fp = changer_priorite(fp, v, n_distance)
retourne distance, precedent
```
# Algorithme de Dijkstra avec file
\footnotesize
```C
distance dijkstra(graphe, s, t)
---------------------------------------------------------
pour v dans sommets(graphe)
O(V) si v != s
distance[v] = infini
O(V) fp = enfiler(fp, v, distance[v]) // notre impl est nulle
------------------O(V * V)-------------------------------
tant que !est_vide(fp)
O(1) u, fp = defiler(fp)
---------------------------------------------------------
O(E) pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
O(V) fp = changer_priorite(fp, v, n_distance)
---------------------------------------------------------
retourne distance
```
* Total: $\mathcal{O}(|V|^2+|E|\cdot |V|)$:
* Graphe dense: $\mathcal{O}(|V|^3)$
* Graphe peu dense: $\mathcal{O}(|V|^2)$
# Algorithme de Dijkstra avec file
## On peut faire mieux
* Avec une meilleure implémentation de la file de priorité:
* Tas binaire: $\mathcal{O}(|V|\log|V|+|E|\log|V|)$.
* Tas de Fibonnacci: $\mathcal{O}(|V|+|E|\log|V|)$
* Graphe dense: $\mathcal{O}(|V|^2\log|V|)$.
* Graphe peu dense: $\mathcal{O}(|V|\log|V|)$.
# Algorithme de Dijkstra (exercice, 5min)
![L'exercice.](figs/dijkstra_exo.png){width=60%}
* Donner la liste de priorité, puis...
## A chaque étape donner:
* Le tableau des distances à `a`;
* Le tableau des prédécesseurs;
* L'état de la file de priorité.
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 1.](figs/dijkstra_ex_0.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 2.](figs/dijkstra_ex_1.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 3.](figs/dijkstra_ex_2.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 4.](figs/dijkstra_ex_3.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 5.](figs/dijkstra_ex_4.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 6.](figs/dijkstra_ex_5.png)
# Limitation de l'algorithme de Dijkstra
## Que se passe-t-il pour?
![Exemple.](figs/exemple_neg.png){width=50%}
## Quel est le problème?
. . .
* L'algorithme n'essaiera jamais le chemin `s->x->y->v` et prendra direct `s->v`.
* Ce problème n'apparaît que s'il y a des poids négatifs.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment