Skip to content
Snippets Groups Projects
Verified Commit e10b4cfc authored by orestis.malaspin's avatar orestis.malaspin
Browse files

removed toucan

parent 0042d4e6
Branches
No related tags found
No related merge requests found
[submodule "toucan"]
path = lattice-boltzmann.com/themes/toucan
url = https://git.42l.fr/HugoTrentesaux/toucan.git
[submodule "lattice-boltzmann.com/themes/abridge"]
path = lattice-boltzmann.com/themes/abridge
url = https://github.com/jieiku/abridge.git
......@@ -21,7 +21,7 @@ The incompressible Navier--Stokes equations reads
$$
\begin{align}
&\bm{\nabla}\cdot\bm{u}=0,\\\\
&\frac{\partial}{\partial t}\bm{u}+\bm{u}\cdot\bm{\nabla}\bm{u}=-\frac{1}{\rho}\bm{\nabla}p+\nu\bm{\nabla}^2\bm{u},
&\partial_t\bm{u}+\bm{u}\cdot\bm{\nabla}\bm{u}=-\frac{1}{\rho}\bm{\nabla}p+\nu\bm{\nabla}^2\bm{u},
\end{align}
$$
where $p$, $\rho$, $\nu$, and $\bm{u}$ are respectively the pressure, density, kinematic viscosity, and velocity of the flow.
......@@ -34,7 +34,7 @@ $$
\begin{aligned}
&\bm{u}^\ast=\frac{\bm{u}}{U}, &p^\ast=\frac{p}{\rho U^2},\\\\
&t^\ast=\frac{U}{L}t, &\bm{x}^\ast=\frac{\bm{x}}{L},\\\\
&\frac{\partial}{\partial t^\ast}=\frac{L}{U}\frac{\partial}{\partial t}, &\bm{\nabla}^\ast=L\bm{\nabla}
&\partial_t^\ast=\frac{L}{U}\partial_t, &\bm{\nabla}^\ast=L\bm{\nabla}
\end{aligned}
\end{equation}
$$
......@@ -42,7 +42,7 @@ Replacing these equations into the Navier--Stokes equations one gets
$$
\begin{align}
&\bm{\nabla}^\ast\cdot\bm{u}^\ast=0,\\\\
&\frac{\partial}{\partial t^\ast}\bm{u}^\ast+\bm{u}^\ast\cdot\bm{\nabla}^\ast\bm{u}^\ast=-\bm{\nabla}^\ast p^\ast+\frac{1}{\mathrm{Re}}\bm{\nabla}^{\ast 2}\bm{u}^\ast,
&\partial_t^\ast\bm{u}^\ast+\bm{u}^\ast\cdot\bm{\nabla}^\ast\bm{u}^\ast=-\bm{\nabla}^\ast p^\ast+\frac{1}{\mathrm{Re}}\bm{\nabla}^{\ast 2}\bm{u}^\ast,
\end{align}
$$
where $\mathrm{Re}=U\cdot L/\nu$ is the _famous_ Reynolds number which represents the ratio of the inertial over the viscous forces.
......@@ -115,7 +115,9 @@ $$
$$
where the space, time, and microscopic velocity dependence is omitted and where
$$
\begin{equation}
\mathrm{Kn}=\frac{\tau\xi_0}{L},
\end{equation}
$$
is the Knudsen number.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment