Skip to content
Snippets Groups Projects
Verified Commit e10b4cfc authored by orestis.malaspin's avatar orestis.malaspin
Browse files

removed toucan

parent 0042d4e6
No related branches found
No related tags found
No related merge requests found
[submodule "toucan"]
path = lattice-boltzmann.com/themes/toucan
url = https://git.42l.fr/HugoTrentesaux/toucan.git
[submodule "lattice-boltzmann.com/themes/abridge"] [submodule "lattice-boltzmann.com/themes/abridge"]
path = lattice-boltzmann.com/themes/abridge path = lattice-boltzmann.com/themes/abridge
url = https://github.com/jieiku/abridge.git url = https://github.com/jieiku/abridge.git
...@@ -21,7 +21,7 @@ The incompressible Navier--Stokes equations reads ...@@ -21,7 +21,7 @@ The incompressible Navier--Stokes equations reads
$$ $$
\begin{align} \begin{align}
&\bm{\nabla}\cdot\bm{u}=0,\\\\ &\bm{\nabla}\cdot\bm{u}=0,\\\\
&\frac{\partial}{\partial t}\bm{u}+\bm{u}\cdot\bm{\nabla}\bm{u}=-\frac{1}{\rho}\bm{\nabla}p+\nu\bm{\nabla}^2\bm{u}, &\partial_t\bm{u}+\bm{u}\cdot\bm{\nabla}\bm{u}=-\frac{1}{\rho}\bm{\nabla}p+\nu\bm{\nabla}^2\bm{u},
\end{align} \end{align}
$$ $$
where $p$, $\rho$, $\nu$, and $\bm{u}$ are respectively the pressure, density, kinematic viscosity, and velocity of the flow. where $p$, $\rho$, $\nu$, and $\bm{u}$ are respectively the pressure, density, kinematic viscosity, and velocity of the flow.
...@@ -34,7 +34,7 @@ $$ ...@@ -34,7 +34,7 @@ $$
\begin{aligned} \begin{aligned}
&\bm{u}^\ast=\frac{\bm{u}}{U}, &p^\ast=\frac{p}{\rho U^2},\\\\ &\bm{u}^\ast=\frac{\bm{u}}{U}, &p^\ast=\frac{p}{\rho U^2},\\\\
&t^\ast=\frac{U}{L}t, &\bm{x}^\ast=\frac{\bm{x}}{L},\\\\ &t^\ast=\frac{U}{L}t, &\bm{x}^\ast=\frac{\bm{x}}{L},\\\\
&\frac{\partial}{\partial t^\ast}=\frac{L}{U}\frac{\partial}{\partial t}, &\bm{\nabla}^\ast=L\bm{\nabla} &\partial_t^\ast=\frac{L}{U}\partial_t, &\bm{\nabla}^\ast=L\bm{\nabla}
\end{aligned} \end{aligned}
\end{equation} \end{equation}
$$ $$
...@@ -42,7 +42,7 @@ Replacing these equations into the Navier--Stokes equations one gets ...@@ -42,7 +42,7 @@ Replacing these equations into the Navier--Stokes equations one gets
$$ $$
\begin{align} \begin{align}
&\bm{\nabla}^\ast\cdot\bm{u}^\ast=0,\\\\ &\bm{\nabla}^\ast\cdot\bm{u}^\ast=0,\\\\
&\frac{\partial}{\partial t^\ast}\bm{u}^\ast+\bm{u}^\ast\cdot\bm{\nabla}^\ast\bm{u}^\ast=-\bm{\nabla}^\ast p^\ast+\frac{1}{\mathrm{Re}}\bm{\nabla}^{\ast 2}\bm{u}^\ast, &\partial_t^\ast\bm{u}^\ast+\bm{u}^\ast\cdot\bm{\nabla}^\ast\bm{u}^\ast=-\bm{\nabla}^\ast p^\ast+\frac{1}{\mathrm{Re}}\bm{\nabla}^{\ast 2}\bm{u}^\ast,
\end{align} \end{align}
$$ $$
where $\mathrm{Re}=U\cdot L/\nu$ is the _famous_ Reynolds number which represents the ratio of the inertial over the viscous forces. where $\mathrm{Re}=U\cdot L/\nu$ is the _famous_ Reynolds number which represents the ratio of the inertial over the viscous forces.
...@@ -115,7 +115,9 @@ $$ ...@@ -115,7 +115,9 @@ $$
$$ $$
where the space, time, and microscopic velocity dependence is omitted and where where the space, time, and microscopic velocity dependence is omitted and where
$$ $$
\begin{equation}
\mathrm{Kn}=\frac{\tau\xi_0}{L}, \mathrm{Kn}=\frac{\tau\xi_0}{L},
\end{equation}
$$ $$
is the Knudsen number. is the Knudsen number.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment